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1 Summary
1.1 Objective

The purpose of these notes is to introduce the reader to Fuzzy Logic based controllers or Fuzzy Controllers
(FCs), one of the most promising emerging technology in the field of Engineering.

First, we will focus on the technology development of Fuzzy Controllers. We will explain their develop-
ment, compilation, and deployment process, and we will discuss a representative sample of their industrial
applications.

Then, we will discuss Fuzzy Controllers within the context of the broader field of Soft Computing (SC), a
new discipline that combines emerging problem-solving technologies such as Fuzzy Logic (FL), Probabilistic
Reasoning (PR), Neural Networks (NNs), and Genetic Algorithms (GAs). Each of these technologies provide
us with complementary reasoning and searching methods to solve complex, real-world problems.

Within this broader context, we will analyze and illustrate some of the most useful combinations of SC
components, such as the use of FL to control GAs and NNs parameters; the application of GAs to evolve
NNs (topologies or weights) or to tune FL controllers; and the implementation of FL controllers as NNs
tuned by backpropagation-type algorithms.

1.2 Motivation

The complexity of real-world engineering problems exemplifies the famous principle of incompatibility, pre-
sented by Zadeh in 1973 [Zadeh, 1973]. In his observations Zadeh statd that: ” ... as the complexity of a
system ncreases, our ability to make precise and yet significant statements about the its behavior diminishes,
until a threshold is reached beyond which precision and significance (or relevance) become almost mutually
exclusive characteristics.” From this principle and from other observations, we can conclude that:

o There is a tradeoff between precision and reliability. Our quest for precision is usually incompatible
with our quest for reliability and robustness: as we strive to provide very precise answers to ill-defined
and complex problems we introduce unrealistic assumptions in our models that cause such a precise
answer not to be the true one.

o There 1s a tradeoff between precision and complexity. The complexity required to solve a given problem
increases considerably with the required solution’s precision. Common tasks routinely performed by
humans, such as parking an automobile parallel to the curb, quickly become untractable, and therefore
impossible to be performed in real time by a machine, as the problem requirements become too precise,
e.g: backing-up at -2.75 mph, counterteering at not more than 53.5 degrees, leaving the car at a distance
of 2.45 inches from the curb, etc.)

The key issue is to determine the information granularity required to exploit the problem’s intrinsic toler-
ance for imprecision, thus providing us with an imprecise answer that is still useful, reliable, and inexpensive
to compute. The ability to reason with fuzzy granules (via deductions and interpolation mechanisms) is one
of the strongest points of Fuzzy Systems.

In this report we will focus on the use of Fuzzy Systems to synthesize controllers for dynamical systems.

1.3 Structure of the Report

This report is subdivided into three major parts: FLC technology, FLC applications, and FLC within
the scope of Soft Computing. In the first part we will illustrate the development process common to Fuzzy
Systems (both fuzzy rule based systems and fuzzy controllers). This will be followed by a detailed description
of fuzzy controllers technology and its components: FLC interpreters, compilers, and run-time engine. A
detailed description can be found in [Bonissone, 1991b; Bonissone and Chiang, 1993].

In the second part, we will discuss some of the FLC applications. We will compare these applicationsin a
cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application.
We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit
the tradeoff criteria used to manage multiple control strategies. See [Bonissone et al., 1995; Bonissone, 1994].

Finally in the third part of this report we will show how FLC and in general Fuzzy Systems are components
of a broader paradigm called Soft Computing (SC). After a brief description of each of SC technologies,
we will analyze some of their most useful combinations, such as the use of FL to control GAs and NNs
parameters; the application of GAs to evolve NNs (topologies or weights) or to tune FL controllers; and the
implementation of FL controllers as NNs tuned by backpropagation-type algorithms. See [Bonissone, 1997].



2 PART I: Fuzzy Logic Controllers

2.1 FLC Introduction

Over the last decade, the number of applications of Fuzzy Logic Controllers (FLCs) has dramatically in-
creased. Initially outlined by Zadeh [Zadeh, 1973] and explored by Mamdani [Mamdani and Assilian, 1975;
Kickert and Mamdani, 1978] in the early seventies, FLC applications exhibited their first industrial and com-
mercial growth in Japan almost a decade later [Sugeno, 1985; Yasunobu and Miyamoto, 1985]. Since then,
many Japanese companies have offered consumer-oriented products enhanced by FLC technology, such as
Canon’s camera autofocus control [Shingu and Nishimori, 1989], Honda’s and Nissan automatic transmission
[Takahashi et al., 1991], Mitsubishi’s room air conditioner control, Panasonic’s clotheswasher control, and
Toshiba’s elevator control.

With a better understanding of FLC synthesis and analysis methodologies and the availability of com-
mercial FLC development tools, FLC applications have also become more popular in the US and Europe. In
this paper we will focus on the development and deployment of five FLC technology applications, describe
the enabling FLC technology and offer some predictions of future research trends.

We will briefly address the problem of synthesizing nonlinear controllers and describe the typical fuzzy
logic based solution. Then we will provide a comparison framework defined by development and deployment
cost, required performance, and throughput.

2.2 Synthesizing the Control Surface

The fuzzy Proportional Integral (PI) controller is one of the most common fuzzy logic controllers. This
controller is defined by a customized nonlinear control surface in the (e, é, du) space. In this section we will
compare the fuzzy PI with some of its conventional counterparts, namely the conventional PI and the two
dimensional sliding mode controller.

2.2.1 Conventional PI controllers

Conventional controllers are derived from control theory techniques based on mathematical models of the
open-loop process to be controlled. For instance, a conventional proportional-integral (PI) controller can be
described by the function

u = Kye+ K; fedt
f[xpe—i—lxedt

or by its differential form
du = (K,é+ K;e)dt

The proportional term provides control action equal to some multiple of the error, while the integral term
forces the steady state error to zero. Otherwise, the controller will always force a change in the manipulated
variable.

Geometric Interpretation of a PI In the case of the conventional PI controller, for instance, let e be
defined as the set point subtracted from the actual value of a given signal, and let positive é denote an
increasing rate of change of e. Assume a control law that requires a high positive du to counteract a high
negative e with a high negative é and a high negative du to counteract a high positive e with a high positive
€. Also assume that the goal of the control law is to bring the system to the equilibrium point of zero e
and zero é. In a three dimensional space with axes e, ¢, and du, the control surface du of a conventional PI
would be a plane passing through the origin and oriented at some angle with respect to the e-é plane, the
angle determined by the particular values of K, and K;, as shown in Figure 1 (a).

Linear controllers, which are relatively easy to develop, can be visualized as hyperplanes in an (n + 1)
dimensional space, mapping an n dimensional state vector to a control action. Nonlinear controllers, on the
other hand, represent a much harder synthesis problem. The intrinsic difficulty of this task has spurred the
development of alternative control synthesis techniques, such as Fuzzy Logic Control.
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Figure 1: The control surface of: (a) a conventional PI controller; (b) a two dimensional sliding mode
controller; (¢) a fuzzy logic PI controller; and (d) the rule set defining the fuzzy PIT’s surface.

Tuning PIs Once initial values of K, and K; have been determined by the Zeigler-Nichols method, a
number of heuristics are used to fine tune those values. Increasing K, causes the rise time to decrease,
because the error will be amplified and the controller will output a greater controller action. However,
a large increase in K, will also cause the controlled variable to overshoot its steady state value, and the
oscillations about that value to markedly increase. Decreasing K; will reduce the overshoot of the controlled
variable at the expense of the rise time, because the integral of the error will be attenuated.

2.2.2 Fuzzy Logic PI Controllers

FLCs are knowledge based controllers usually derived from a knowledge acquisition process or automati-
cally synthesized from self-organizing control architectures [Procyk and Mamdani, 1979]. These controllers
typically define a nonlinear mapping from the system’s state space to the control space. Thus each FLC
can be visualized as a nonlinear control surface reflecting a process operator’s or a product engineer’s prior
knowledge. Each control surface is declaratively represented in a Knowledge Base (KB) and executed by an
interpreter or a compiler.

The KB consists of a set of fuzzy rules, termsets, and scaling factors, which are evaluated by an inter-
preter. For instance, in the case of a fuzzy proportional-integral (PT) controller, the rule set maps linguistic
descriptions of state vectors [e, ¢] into incremental control actions du; the termsets define the semantics of
the linguistic values used in the rules; and the scaling factors determine the extremes of the numerical range
of values for both the input and output variables. Using fuzzy logic we can synthesize a step-like control
surface with gradations between the steps (obtained from an interpolation mechanism), which generalizes
the control surface of the conventional PI, as can be seen in Figure 1 (c).



Reference fuzzy sets are defined for e, é, and du in their corresponding termsets. Similarly, scaling factors
N, N;, and Ny, are also defined to determine the range of values for e, ¢, and du, e. g. =N, < e < N,.
In the rule set, a distribution for the controller output du is defined for each combination of the linguistic
sets for e and é, as illustrated in Figure 1 (d). In the figure, the error e has been divided into seven fuzzy
sets; PH is positive high, PM positive medium, PL positive low, ZE zero, NL negative low, NM negative
medium, and NH negative high. ¢ has also been divided into the reference fuzzy sets with the same linguistic
labels. It is important to note that e and é are not defined over the same universe of discourse, so their
membership functions need not be identical. The rules have an intuitive interpretation. For example, if e
has a negative medium value and é has a negative low value, then the error is slowly increasing. Thus, the
appropriate control action is a positive medium increase in u. If the membership functions for e and é are
properly defined (typically overlapping by twenty-five percent) and if either or both e and é happen to fall
into the overlapping area, two or more rules will fire. The controller output du will be an interpolation of
the du values for each firing rule. This results in the gradations in the control surface.

Relation between PIs and Fuzzy PIs From the comparison of Figure 1 (a) and Figure 1 (¢), it is
obvious that a larger number of parameters must be defined to specify the nonlinear surface. As summarized
in Figure 2, the linear controller requires only a gain vector, whereas the fuzzy controller needs a rule base,
termsets, and the equivalent of the gain vector, represented by the input and output scaling factors.

| GAIN VECTOR I

/

e Crisp Input Vector Crisp Output
i > | 'NNER > du
e PRODUCT
Linear Controller
SCALE FACTORS RULE SET MEMBERSHIPS SCALE FACTOR I
Raw Norm. Norm. Raw
Crisp Crisp Fuzzy Fuzzy Crisp Crisp
Inputs Inputs Inputs Outputs Output Output
FUzzY
¢ — INPUT —> | FUZZIFY | — | DECISION| —> DE- ——| QUTPUT | 5 gy
SCALING FUZZIFY SCALING
PROCESS
Premise Evaluation Aggregation
Output Inference Defuzzification

Fuzzy Logic Controller

Figure 2: Design parameters for linear and fuzzy PI controllers

This rule set and the associated termsets define the contents of the knowledge base for the fuzzy logic
PI. The fuzzy logic analogue of K, and K; are reflected in the normalizing factors of the termsets for e and
é. In particular, K, is approximately equal to Ng,/N¢, while K; corresponds to (Ngu/Nc)df, where df is
1/dt [Zheng, 1992]. By increasing N, K, is decreased. Likewise, by increasing V., K; is decreased [Tang
and Mulholland, 1987]. Similarly, the normalizing factor of the termset for the incremental control action
du is directly proportional to both K, and K;.

Since the fuzzy PI i1s a nonlinear controller, we will extend its comparison to a conventional nonlinear
controller, implemented using sliding mode control. In the remainder of this section we will provide an
interpretation of the fuzzy logic PI in terms of a two dimensional sliding mode control. A detailed explanation
of the sliding mode control and of its generalization to the FLC can be found in references [Slotine and Li,
1991] and [Palmer, 1991], respectively.



2.2.3 Two Dimensional Sliding Mode Controllers

For second order systems, the problem of forcing state vector & = [ &] to track a desired vector &y = [x4 @ 4]
can be reduced to the problem of keeping the function

s=é+ Ae

as close to zero as possible, where e is the tracking error & — 24, € is the tracking error derivative & — 24,
and A 1s some problem-specific constant.

In two dimensions, the line defined by the equation s = 0 1s termed the switching line. A sliding mode
controller attempts to drive the error vector onto the switching line as rapidly as possible, and then force it
to the equilibrium point [e é] = [0 0]. This is accomplished by defining the control law u as follows:

+K ifs>0
u(s) = 0 fs=0
—K ifs<0

However, the discontinuity at the switching line s = 0 causes extremely high control action if the system
does not settle onto the switching line. To remedy this problem, the discontinuity can be smoothed out by
a gradation in the region |s| < @, so the control law becomes:

+K ifs>a
u(s) =4 +Kg5 if|s| <@
-K ifs< -9

The sliding mode controller is linear in the region close to the switching line. For the fuzzy logic PI, the
controller output du can be given exponential gains in the region |s| < ®. For instance, if the membership
functions for low magnitude du had their centers of mass a distance d away from the origin, the membership
functions for medium magnitude could have centers of mass 2d away from the origin, and those for high
magnitude 4d away. This would cause the state vector to approach the switching line faster, reducing rise
time.

Settling time can also be reduced by placing a deadband around the switching line close to the equilibrium
point. This is done by defining the membership functions for positive low and negative low error so that
they stop some small distance away from the point at which the error is zero. The same is done for the error
derivative. Thus, when the equilibrium point is approached, there is no change in controller output.

Finally we note that by tuning a fuzzy PI, we can smooth the step-like control surface and we can modify
the switching line and generalize it to be a smoother higher-order curve, as illustrated in [Smith and Comer,

1991].

2.3 FLC Technology Development Cycle

The interpreter and the compiler are two of the major elements of the FLC development cycle. The process
that leads to the synthesis of a FLC is indeed very similar to that of a Knowledge Based System [Bonissone,
1991b).

2.3.1 The Reasoning Tasks

Three main reasoning tasks are common to KBS and FC: the knowledge representation, the inference mech-
anism applicable to the chosen representation and the control of the inference. In the next two sections
we will briefly cover these tasks for FC. For a more detailed description of KBS reasoning tasks the reader
is referred to reference [Bonissone et al., 1987a), while the FC reasoning tasks are extensively covered in
reference [Bonissone and Chiang, 1993].

2.3.2 The Application Tasks

As noted in reference [Bonissone, 1990], there are five major stages required to synthesize a Knowledge Based
System:

1. requirements and specifications (knowledge acquisition),



2. design choices (KB development),
3. testing and modification (KB functional validation),
4. optimizing storage and response time requirements (KB compilation),
5. running the application (deployment).
The same task decomposition applies to the development of a FLC application:
1. performance function definition, order estimation, state variable identification,
2. KB generation (determination of scaling factors, termsets, and rulesets),
3. stability and robustness analysis, KB tuning,
4. fuzzy rule set compilation,
5. portability /embeddability of the FLC on the target platform.

The first three stages correspond to the FLC development phase, while the last two correspond to its
transition from development to deployment.

The use of an interpreter requires the evaluation of allthe rules in the KB at every iteration. By compiling
the KB offline and using a simpler run-time engine, we can reduce the response time and decrease the
memory requirements. This feature enables us to implement inexpensive FLCs for cost-sensitive applications.
In references [Bonissone and Chiang, 1993; Bonissone, 1991b] the interested reader can find an extensive
description of the FLC development and compilation process.

The key advantage of FLCs is their cost-effectiveness in quickly synthesizing nonlinear controllers for
dynamic systems. We have reduced design cycle time during the development phase by using an interactive
computing environment based on a high level language with its local semantics, interpreter, and compiler.
We have achieved efficiency and portability by cross-compiling, the resulting knowledge bases or nonlinear
control surfaces prior to deployment.

3 FLC Reasoning Tasks

3.1 The Knowledge Representation

The main representational issues for the FC are: the quantification of the input; the termset definition for
each state variable and for each control action; the definition of the type of fuzzy production rule to be used
in the KB.

The input quantization consists of describing the input as a fuzzy subset of the input space. This process
i1s necessary to make each input element dimensionally compatible with each state variable. When the
universe of discourse of the state is discretized, the FC designer needs to determine a mapping from intervals
of the universe of discourse to its point representation. When the universe of discourse is continuous, this
mapping 1s not needed.

The definition of the termset is perhaps the most important of the representational issues. For each state
variable and control action, we need to define the granularity of their values [Bonissone and Decker, 1986].
Thus, we must determine the cardinality of termsets used to represent each state variable and action, the
semantics of the above termsets, and the scaling factors for each state variable and action. These design
choices are crucial to 1ssues such as steady-state performance and stability. In particular we have observed
that the FC steady-state behavior improves considerably when the termset provides finer granularity around
the equilibrium point [Burkhardt and Bonissone, 1992a).

3.1.1 Rule Base

The most common definition of a fuzzy rule base R is the disjunctive interpretation initially proposed by
Mamdani [Mamdani and Assilian, 1975] and found in the majority of Fuzzy Controller applications:

3

R:Um:' (X; — V) (1)

i=1 i=1

10



R is composed of a disjunction of m rules. Each rule r; defines a mapping between a fuzzy state vector X;
and a corresponding fuzzy action Y;. Each rule r; is represented by the Cartesian product operator. There
are, however, other representations for a fuzzy rule, which are based on the material implication operator and
the conjunctive interpretation of the rule base [Trillas and Valverde, 1985]. For a definition of different rule
types, the interested reader should consult references [Mizumoto and Zimmerman, 1982] and [Lee, 1990b).
A particularly useful type of FC is the Takagi-Sugeno (TS) controller [Takagi and Sugeno, 1985]. In this
type of controller the output Y; of each rule r; : (72 — YZ) is no longer a fuzzy subset of the output space

but rather a first order polynomial in the state space X;, i.e.:
n
Yi=F(X)=co+) Xy (2)
j=1
where X; ; is the jth element of th n-dimensional vector X,

3.2 Inference Engine: Modus Ponens

The inference engine of a FC can be defined as a parallel forward chainer operating on fuzzy production
rules. An input vector I is matched with each n-dimensional state vector X, i.e., the Left Hand Side (LHS)
ofrule r; = X; — Y;. The degree of matching A; indicates the degree to which the rule output can be applied
to the overall FC output. The main inference issues for the FC are: the definition of the fuzzy predicate
evaluation, which is usually a possibility measure [Zadeh, 1978]; the LHS evaluation, which is typically a
triangular norm [Schweizer and Sklar, 1963; 1983; Bonissone, 1987]; the conclusion detachment, which is
normally a triangular norm or a material implication operator; and the rule output aggregation, which is
usually a triangular conorm for the disjunctive interpretation of the rule base, or a triangular norm for the
conjunctive case.
Under commonly used assumptions we can describe the output of the Fuzzy System as

py (y) = \/ (min[/\i, ﬂY,(y)]) (3)

where A; is the the degree of applicability of rule »;
A= AT(X 5 | I) (4)
J
and II(X; ; | I;) is the possibility measure representing the matching between the reference state variable
and the input element!
W(Xij | 1) = \/ (minlpx, , (2;), ur(e;)]) (6)
Equations (3), (4), and (6) describe the generalized modus ponens [Zadeh, 1979], which is the basis for
interpreting a fuzzy-rule set.

3.3 Inference Control: Defuzzification

Among the many inference control issues, the most typical are the defuzzification of the FC output, the KB
selection for hierarchical or supervisory control mode, the KB self-organizing structure, etc.

The most basic design choice is the selection of the defuzzification mode. The output of the rule aggrega-
tion stage is a composite membership distribution defined on the space of control actions. This distribution
must be summarized into a scalar value before 1t is passed to an actuator for execution. This summarization
can be performed by a variety of defuzzifiers: the Mean of Maxima (MOM), the Center of Gravity (COG),
the Height Method (HM).

1When the input is crisp, the degree of matching is the evaluation of the reference membership distribution at the point
representing the value of the input:

I(Xs,j [ Ij) = manlux, ;(wo), n1;(zo)] = nx, (o) (5)
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3.3.1 Mean Of Maxima (MOM)

The MOM method defines the crisp output y* as the value of y in which the membership distribution py (y)
achieves its maximum. If the maximum is obtained in multiple points, y* is the average of such set of points.
Therefore we can define the interval of points ¥* where such maximum is achieved as

v ={eY [p @)=\ )} (7)

and then we define y* as the average of y*.

3.3.2 Center Of Gravity (COG)
The COG method derives the crisp output y* as

Sy omv(y) dy
V= ) dy ®)

3.3.3 Height Method (HM)

The HM method derives the crisp output y* as
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where ¢; is the center of gravity of uy,(y).

The selection of the defuzzifier is a tradeoff between storage requirements (MOM lends itself to easy
compilation), performance (COG typically exhibits the smoothest performance), and computational time
(HM is faster to compute than COG) [Mizumoto, 1989)].

4 The Fuzzy KB Compilation Process

The compilation of fuzzy rule bases into fast access lookup tables is analogous to the compilation process
used in programming languages and KBS.

Traditionally, the compilation process in programming languages refers to the translation of statements
from a high-level source language into a low-level target language, such as assembly language or machine
language, to allow for an efficient execution.

The compilation process in Knowledge Based Systems usually refers to the process of translating variables,
predicates, and rules into a dependency graph. Such a graph is used to keep a pointer for all rules containing
the same variable, and for all variables affected by the same rule, thus eliminating the need of run-time
search. The graph typically maintains the current evaluation of each rule, allowing for incremental rule
evaluation when new information is entered [Forgy, 1982; Bonissone and Halverson, 1990]. Therefore, an
interpreter can be used during the KBS development phase, where changing requirements and functionalities
may require changes in the source code or in the knowledge base. After a successful validation stage, the KB
is considered stable and can then be compiled to minimize storage requirements, avoid exhaustive evaluation,
and improve run-time performance.

In a similar fashion, a FC application can be compiled after the validation stage. During the development
phase we use the FC interpreter to generate, fine-tune, and validate the fuzzy KB (i.e., scaling factors, term
sets and rule set). Once the validation is complete, we employ a FC compiler to generate lookup tables from
the fuzzy rule sets.

Let’s analyze the FC’s two modes of operation, i.e., interpreted and compiled, by observing the way we
synthesize the FC’s end-product, i.e. the non-linear control surface. In interpreted mode, at every iterations
we fire all the rules to reconstruct the control surface and than we evaluate it for the current input’s values.
In compiled mode, we first map the current input values to a coordinate set. This set defines the projection
on the state space of the patch of the control surface that is relevant to the input. Therefore, at every
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Figure 3: Number of elements in M3 for { =5 and n = 2.

iteration we construct the relevant patch (by firing a much smaller rule subset) and then we evaluate the
patch for the current input’s values.

The architecture of a compiled FC, illustrated in Figure 4, consists of four tables (M1, M2, M3, and M4),
an address generator, a run-time engine, and a defuzzifier. The interested reader will find more detailed
information in reference [Bonissone and Chiang, 1993]. Table M1 contains the termsets of the input and
output variables. Table M2 lists the rules, with pointers to the termsets that make up the LHS of those
rules, as well as pointers to the conclusions of those rules.

The main effort of the compiler is expended in the construction of tables M3 and M4. The state space
is partitioned into a number of cells whose boundaries are defined by the termsets of the input variables.
If the termsets are overlapping only with adjacent terms, and the number of terms for each of the n state
variables is ¢, then the state space is composed of (2¢t — 1)” distinct cells, as seen in the last row of Figure 3.
In general, the expression for the number of pointers to r = 2¢ rules is

(1)@=

where ¢ = 0...n. Each of these cells contains a pointer to a corresponding slot in table M4, which in turn
contains a list of pointers to the rules that are applicable in that cell. The maximum length of this list of
pointers is 27.

In the case of the fuzzy PI, where n = 2, M1 contains the termsets for e, ¢, and du, while the entire rule
set 1s listed in M2, with the appropriate pointers to the relevant termsets in M1. M3 details a partitioning
of the e-é plane into a two-dimensional array of size (2t — 1)?, with each cell in the array pointing to a slot
in M4. Of the (2t — 1)? slots in M4, ¢? contain a pointer to a single rule, 2(¢ — 1)t contain pointers to two
rules, and ({ — 1)? contain pointers to four rules.

At run-time, the values of the input variables and the termsets associated with those variables in M1
are by the address generator to determine into which region of the state space the input falls. Once that
region is determined, M3 is consulted, and a list of pointers to the relevant rules in M2 is obtained from M4.
The rest of the inferencing process is similar to that of an interpreted FC. However, the run-time process
has been made more efficient by avoiding the evaluation of those rules whose contribution is zero. Thus,
expression for the Height Method (HM), which was:
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(10)

where ¢; is the center of gravity of uy,(y), is reduced now to:

. Zn,\,;ﬁo(’\i X ¢i) (11)
v Zn,\,;ﬁo Ai

where m, the maximum number of rules evaluated in interpreted mode, is a function of the number of state
variables n, and the cardinality ¢ of each state variable’s termset, namely m < 7. After compilation, the
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Figure 4: Architecture of a compiled FC, functionally equivalent to that of an interpreted FC.

worst-case maximum number of rule evaluations is | A; # 0 |< 2", but the compiled FC is still function-
ally equivalent to the interpreted FC. However, the run-time interpreter must still calculate the degrees of
matching for the firing rules, perform conclusion detachment, and defuzzify the resulting output.

Figure 5 shows the decrease of run-time rule evaluations obtained by the compilation process. In the
worst case, rule execution will be reduced from ¢” to 2”. In the average case, the reduction will be from ¢”
to about 2-4 rules. The average case was computed as the ratio %, assuming uniform distributions for the
input values and equal partitions size in the state space.? The last two columns of the same table illustrate
the memory requirements for M3 and M4, i.e., the storage price to be paid for the run-time gains.

Alternatively, to increase the throughput of the controller at the expense of accuracy, run-time rule
evaluation can be completely avoided by performing that evaluation during compilation. For each region in
the state space partition, a representative point is chosen, and each of the firing rules is evaluated at that
point. The resulting output value is stored in M3, instead of storing pointers to lists of rules. At run-time
the input values are used to determine the region of state space in which the input falls, and the output
value stored there is returned.

This approximation results in a non-uniform sampling of the state space. In the ¢” regions where only one
rule can fire, the output value is equivalent to the interpreted FC. The control surface of the approximated
FC differs the greatest in the (2t — 1) —t™ regions of overlap, where two or more rules are applicable. In the
case of the fuzzy PI, the horizontal areas of the control surface remain unchanged, while the sloping areas

2The cells into which the state space has been subdivided have equal size (area, volume, or hypervolume) if the support
of any two adjacent inner terms in each termset has a 33% overlapping and the support of any adjacent inner term with any
extreme term of every termset has a 50% overlapping. Any smaller overlapping will reduce the size of partitions containing
multiple rules and further decrease the average number of run-time rule evaluations.
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PARAMETERS INTERPRETED COMPILED
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5 3 125 8 3.01 729 2,197
5 4 625 16 4.35 6,561 28,561

Figure 5: Rule evaluations and storage requirements using compilation.

are replaced with horizontal ones, whose heights are intermediate to those of the boundaries of the sloping
areas.

Further details on the compilation process are available in [Bonissone and Chiang, 1993], where we show
that compilation can reduce run-time rule evaluations by two orders of magnitude in the average case. In the
same reference we analyze the memory requirements to show that the compilation can be implemented using
the small microprocessors (e.g. 4-8 bit) and limited memory (e.g. 4K-8K bytes) typical of cost-sensitive
applications such as appliances and consumer electronics.

5 Cost-Complexity Framework for FC Applications

In reference [Bonissone et al., 1995], we have proposed a cost-complexity framework to show the gamut of
FC applications categorized by their cost and performance requirements. This is illustrated in Figure 6.
Beside this tradeoff, a third criterion, throughput, is considered a constraint in our comparative analysis.
From this analysis, we have observed that as the complexity requirements increase, the structure of the FC
becomes hierarchical, following a typical divide-and-conquer strategy. The higher level controller contains
the explicit tradeoff knowledge and defines the degree of compromise among the usually competing control
goals of the lower level controllers, such as performance versus safety, and fuel efficiency versus emissions.

5.1 Low-Cost/Low-Complexity

The first type of FC applications, exemplified by dishwasher control, is characterized by low cost and com-
plexity. These products are mass-produced and sold at relatively low prices. This type of application usually
does not push the performance limits but is constrained by cost. The control of appliances usually consists
of simple heuristic decision rules. The typical payoff is smart behavior with low development, deployment,
and maintenance costs. Most of these application requirements are addressed by compilation techniques that
simplify the path from development to deployment.

5.2 High-Cost/High-Complexity

The second type of FC applications, exemplified by aircraft engine control, is characterized by high cost
and high complexity. These products are produced in much smaller quantities but sold at a much higher
price. Performance, safety, operational costs, efficiency, and product lifetime are the goals and constraints
defining the operational space of the controller. The typical payoff consists of improving performance and
efficiency without violating any constraints, including emissions, safety, and components life. Usual ap-
proaches addressing these requirements are based on a supervisory control to explicitly account for the
various context-dependent tradeoffs. The low-level controllers are implemented by fuzzy or conventional
controllers.
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Figure 6: Cost-Complexity Framework for FC Applications

5.3 High Throughput

The third type of FC applications, exemplified by power electronics control, is characterized by extremely
stringent throughput requirements. These products typically require response times on the order of microsec-
onds. While cost and functional performance are still significant factors, run-time performance, measured in
microseconds, is the critical issue for a successful application. Typical approaches addressing these require-
ments are based on compilation techniques that approximate the behavior of the controller while avoiding
run-time computations. These solutions are then implemented using standard microcontrollers. Alterna-
tively, special purpose hardware realize the fuzzy controller.

5.4 Hierarchical Control

Orthogonal to the above dimensions (cost, throughput, and performance) is the concept of hierarchical
control. A hierarchical control scheme permits the decomposition of complex problems into a series of
smaller and simpler ones. As these simpler problems are solved, typically by using low level controllers,
they can be recombined to address the larger problem. This recombination is governed by a fuzzy logic
supervisory controller that performs soft switching between different modes of operation. The soft switching
allows more than one mode of operation (with its corresponding controller) to be active at any one time. By
assigning a linear combination of low level controllers to a given mode, the engineer can trade off safety and
efficiency against performance.

Another important feature of fuzzy hierarchical control is its inherently simpler software maintenance. By
explicitly representing in the supervisory rule set our policy for managing potentially conflicting goals (lower
level controllers), we are defining our willingness to tradeoff performance under one criterion, such as speed,
for better compliance under a different criterion, such as safety. These tradeoff policies are context dependent,
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as they are conditioned by the left-hand side of the supervisory rules. Therefore, different supervisory modes
entailing different tradeoff policies, for instance the compromise between tank speed/acceleration and engine
lifespan in training mode or in battle mode, can be achieved simply by selecting different rule bases for
the same supervisory controller. We will illustrate our ideas by describing two fuzzy supervisory control
applications to engine control and steam turbine startup.

6 PART I Conclusions: FLC Technology

We have implemented Fuzzy Logic Controllers using a high level language with its local semantics, interpreter,
and compiler.

By using an interactive computing environment based on a FC interpreter, we have considerably shortened
the design cycle of the above applications, while achieving comparable or better performance than purely
conventional control. After validating the synthesized nonlinear control surface, we have improved portability
and decreased deployment cost by compiling the resulting fuzzy KB and by using efficient run-time engines.

The required design cycle time could be reduced even further if we could avoid most or all of the manual
tuning procedures currently used in the last part of the FC development. One of our current research efforts
is indeed aimed at extending adaptation techniques developed in other fields to provide automatic tuning
of FCs. These techniques typically take the existing rule network defined in the FC knowledge base and
provide on-line adaptation for the rule parameters. These synergistic combinations will be further discussed
in Part III as part of the broader field of Soft Computing.

Having provided a cost-complexity framework for FC applications, we will now focus our attention to an
illustrative sample of such applications.
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7 PART II: Sample of Industrial Applications

In this section we will briefly describe our experience in developing and applying fuzzy logic technology to
a variety of control problems, including applications in fuzzy hierarchical control, hybrid control, and high
throughput control.

7.1 Recuperative Turboshaft Engine Control (LV100)

7.1.1 Problem Description

The LV100 is a recuperative turboshaft engine, with a high pressure spool supplying an airflow to a free
power turbine, in order to generate the high torque necessary for moving a heavy vehicle from rest. Gas
turbines have higher fuel consumption rates than diesel engines, the alternative power sources for heavy
vehicles. To address the fuel consumption problem, both a heat exchanger (recuperator) and a variable area
turbine nozzle (VATN) are included to increase the efficiency of the thermodynamic cycle [Bonissone and
Chiang, 1995]. A schematic of this engine is illustrated in Figure 7.

recuperator
| combustor |...

transmission

gas power
compressor turbine turbine

Figure 7: Schematic of the LV100 engine.

Current Solution. In the baseline control version of this system, the engine is controlled by ten low level
controllers, designed to govern the engine when specific conditions, or modes, are sensed. Each time step, a
dominant controller is selected from that group by a network of minimum and maximum functions and its
output passed on to the actuators. Because only one controller is dominant at a given time, abrupt changes
in control action may occur as regulation of the engine passes from one controller to another.

7.1.2 Solution Description

Hybrid Control System: Fuzzy Supervisory and Conventional Low level Controllers. We first
identified twenty-four individual operating modes, and replaced the min/max network (the crisp mode selec-
tor) with a FLC selector that identified modes and utilized the interpolating action of fuzzy logic to blend the
outputs of two or more controllers. The hybrid system control performed better than the baseline control,
but still exhibited some limitations (see section 7.1.3.)

Fuzzy Control System: Fuzzy Supervisory and Fuzzy Low level Controllers. Therefore, we
replaced the conventional low level controllers with fuzzy logic PI ones. Testing of the controls was performed
on a component level simulation of the gas turbine and its associated transmission. Efficiency was improved,
achieving nontrivial fuel savings.

This hierarchical controller architecture is similar to one used for the control of a small helicopter [Sugeno
et al., 1991]. In the helicopter control, three low level controllers are used for roll, pitch, and yaw stability,
while a fuzzy logic supervisory control processes pilot commands and perturbs the inputs to the stability
controllers. In the gas turbine power plant control, six low level controllers are used to govern fuel flow and
turbine nozzle area, while a fuzzy logic supervisory control processes driver commands and combines the
outputs of the low level controllers.
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Advantages of the FLC System. Using fuzzy logic to implement a mode selector provides a number of
advantages:

e Instead of having only a single controller active at a given time, modes can be defined with many
controllers active simultaneously. When switching is performed between two or more modes, the
inferencing method of fuzzy logic interpolates between the control actions for those modes, resulting
in smoother transitions.

e The action of the mode selector is more readily apparent because the dominant mode or modes can
be found by examining a set of engine parameters, whereas the min/max ladder requires the low level
controllers to output excessive rates so that those controllers will not be selected.

e Fuzzy logic mode selection allows the tradeoffs to be moved up into the mode selector, so that the
low level controllers handle the dynamics, while the higher level mode selector deals with quasi-steady
state conditions, thus making the design of low level controllers easier.

7.1.3 Results, Analysis, and Observations

The results obtained from the fuzzy control system can be described using many criteria, such as performance,
fuel consumption, component life expectancy, and cost.

Performance. The response of the plant has been improved with respect to the conventional control
scheme. Shorter rise times (due to the non-linear gain of the controllers) were obtained in conjunction with
reduced overshoots and faster settling times (due to highly tuned low level PIs).

Fuel Consumption. Fuel consumption was considerably lower than the one obtained by using conven-
tional control schemes. The fuzzy logic mode selector was able to run the engine must closer to its optimal
temperature, resulting in a more efficient thermodynamic cycle. Further fuel savings were realized by re-
placing the conventional controllers with fuzzy logic PIs and decoupling the actuator actions.

Component Life. The fuzzy control system provided excellent performance and fuel savings without
sacrificing component life. All operational limits for gas and power turbines, transmission, and recuperator
were maintained.

The fuel consumption and component life results are best illustrated in Figure 8, which shows three plots.
In each plot, the solid line represents the maximum Tg, the temperature which should not be exceeded by
the exhaust gases to preserve the normal life of the heat exchanger (recuperator) illustrated in Figure 7.
The long-dashed line shows the desired Tg, the optimal temperature which would guarantee minimum fuel
consumption. These two references change as a function of the load and are computed on-line by a ther-
modynamic model that runs with the controller. Finally, the short-dashed line shows the actual Tgof the
exhaust gases as they enter the recuperator.

In Figure 8(a) we can observe the results obtained from the the crisp mode selector and the conventional
low level controllers. The control system tries to follow the desired Tg, but we can observe that the gap
between desired and actual Tg, representing fuel inefficiency, is significant. Furthermore, the actual temper-
ature Tg hits the maximum Tg in two places (at ¢ = 15 sec. and ¢ = 470 sec.), as the load (not shown)
suddenly changes. This excursion clearly impacts the recuperator’s life expectancy.

Figure 8(b) displays the results from the hybrid control system. We can observe a considerable improve-
ment in fuel consumption, evidenced by a reduction of the gap between desired and actual Tgs. However, the
actual temperature still hits the maximum temperature in the same two locations. Finally, Figure 8(c¢)
shows the results from the fuzzy control system. The gap has been drastically reduced, leading to consid-
erable fuel savings. Furthermore, the actual temperature Tg never reaches the maximum Tg, extending the
life of the recuperator.

Development Cost. As a final remark, we would like to note that the total effort required to design,
develop, test and tune the FLC system was slightly less than 25% of the time required to develop the
baseline control system. However, the existing baseline controller gave us the additional benefit of an
improved qualitative understanding of the plant’s behavior.
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Figure 8: From top to bottom: (a) baseline control: crisp supervisory and conventional low level controllers,
(b) hybrid control: fuzzy supervisory and conventional low level controllers, (¢) fuzzy control: fuzzy super-
visory and fuzzy low level controllers.
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7.1.4 Application Conclusions

On the whole, fuzzy logic and fuzzy logic mode selection is experimentally tractable, providing performance
comparable to that of the conventional control scheme. In the design of a conventional PI controller, there
are a number of parameters available for adjustment, namely the integrator time constant, and the input and
output gain vectors. The designer of a typical fuzzy logic PI controller has to determine, in addition to input
and output scaling factors, the desired membership functions and rules. These additional degrees of freedom
allow the controller to achieve better performance at the expense of more complex tuning procedures. This
is currently one of the active research topics in FLC technology. In summary, the reduced development
cost, combined with the fuel savings, improved performance, and component life preservation, show the
tremendous potential of this technology in addressing complex, hierarchical control problems. This is further
illustrated in the next application.

7.2 Steam Turbine Start-Up
7.2.1 Problem Description

The process of warming a large steam turbine after an extended period of maintenance or inactivity is called
prewarming. Currently, many large steam turbines are prewarmed manually in an otherwise completely
automated startup procedure. An approach is outlined for automating the prewarming of large steam
turbines using fuzzy logic. In this approach, heuristics employed by a human operator during prewarming
are captured in a fuzzy rule base and used by a supervisory controller.

In rotor prewarming, the goal is to bring the temperatures of critical rotor locations to specified values
before the turbine is accelerated to nominal operating speed. The reason for rotor prewarming is to minimize
the stresses induced in the metal when exposed to main steam temperature and pressure conditions. During
prewarming, the turbine is rotated at a constant low speed of 2.43 rpm. Any acceleration of the turbine
beyond this speed is referred to as a roll-off. The frequency of roll-offs has to be minimized during the
prewarming procedure, as it 1s time consuming to bring the turbine back onto turning gear. The main control
objective during prewarming is to minimize the time to reach the desired turbine component temperatures
while satisfying the following constraints: (i) limit steam flow so as to prevent frequent roll-offs, (ii) limit
temperature gradients in the high-pressure turbine rotor and valve chest so as to stay within specified stress
margins, and (iii) minimize the buildup of condensate in the turbine shell that could lead to cavitation of
the rotor buckets.

The rotor prewarming problem lends itself to a rule-based control approach because no good models
are available for turbines at low temperature and pressure conditions. The lack of appropriate models is
why traditional control oriented approaches to automation of this process have not been successful to date.
However, human operators routinely perform prewarming. This is the motivation for using fuzzy logic, which
can capture heuristic knowledge in a rule base [Lee, 1990a). Fuzzy logic has been used previously in steam
turbine startup, but in the stages following prewarming [et al., 1988].

The benefits of automating this process are (i) extending the life of the turbine, (ii) enabling the turbine
to be brought to roll-off conditions faster, and (iii) creating uniformity in the prewarming procedure across
installations, and within an installation, for different operators.

Current Prewarming Procedure. The present approach to prewarming of turbines consists of two
phases In condensation control, the metal is heated to a temperature above the condensation point by
admitting steam through a valve, the main steam valve bypass valve (MSVBV). Drain valves are wide open
during this stage to allow the condensate to drain, DV(2-5). In the second phase, pressure regulation, the
goal is to pressurize the high-pressure (HP) and reheat (RHT) turbines to a specified value by admitting
steam slowly. During this phase the drain valves are kept almost completely closed, but sufficiently open
to allow the remaining condensate to escape. The rotor is then allowed to soak, while continuing to allow
steam in through the MSVBYV to bring the rotor temperature and pressure to rated values.

The process described above is a manual one at the present time. The goal of this work is to automate
the process, while providing the operator with a knob to control the prewarming rate.
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7.2.2 Solution Description

Prewarming Automation Procedure. The prewarming automation approach is based on a combination
of conventional closed-loop control and fuzzy logic supervisory control.

Several low level regulatory loops are used in the controllers for steam turbines today, specifically in
controlling temperature, speed, stress, and drain valve. Such control loops are traditionally implemented
using conventional control, such as PIs. There are two primary control actuators, the MSVBV and the DVs.
Opening the MSVBYV allows more steam into the turbine, causing a faster rise in temperature and pressure.
The DVs have a secondary effect in that allowing condensate to escape will also result in steam escaping, thus
increasing the warmup time. The three controllers output incremental bypass valve commands (DMSVBYV).
The drain valve control loops generate an incremental control action (DDV) to the drain valve.

Fuzzy Logic Supervisory Control. FEach of the regulatory loops described above is responsible for
maintaining a particular process variable at a specified set point. Some of these objectives may be in conflict
when an overall control objective for the system 1s specified. For example, if the top level control objective
is to prewarm the turbine as fast as possible, then the low level control objectives of draining condensate,
preventing excessive stress in the rotor bore, and keeping the rotor on turning gear have to have a lower
priority than temperature control. Similarly, when the top-level control objective is to prewarm the turbine
at a slower rate, the condensate, stress, and speed control loops have a higher priority than the temperature
regulation loop. The goal of the supervisory controller is to manage the priorities of the lower level control
loops, given a higher level control objective by an operator.

In this approach, the operator is provided with a single input that allows specification of the prewarming
rate in a range from slow to fast. Depending on the prewarming rate selected by the operator, and the
current system state (temperature, speed, stress, and condensate), the low-level control loops are weighted
to varying extents by the fuzzy mode selector to produce control actions for the bypass valve (DMSVBYV)
and drain valves (DDV). The weighting of the individual regulatory loops is determined by a set of fuzzy
rules. Currently eight rules are used to implement the supervisory control function; variations on these rules
could be used to produce different system behaviors, if desired. The inputs to the rules are the operator-
specified warmup rate, the speed error, and the stress error. Other inputs could also be incorporated, such
as pressures and operator observations. The outputs of the fuzzy controller are the weights assigned to the
each of the regulatory control loops corresponding to speed, stress, temperature, and drain valves.

7.2.3 Results, Analysis, and Observations

Figures 9 and 10 illustrate the operation of the supervisory controller in simulation. In each figure the system
variables of interest are rotor bore and surface temperatures, rotor speed, and the condensate accumulation
in each of four sections of the turbine. In Figure 9, the operator has selected a slow warmup rate. The
effect of this selection is evident in the time plots of the system variables. The rotor is almost always on
turning gear, the condensate accumulation is almost zero, the rotor bore stress is well below the allowable
limit of 6500 psi, and the time taken to reach the desired rotor bore temperatures of 300 F is long (12 hours
in simulation). Figure 10 shows the effect of the operator selecting a fast prewarming rate. The rotor is off
turning gear speed much longer, the condensate accumulations are much greater, and the rotor bore stress
exceeds the allowable limit for a longer time, but the prewarming time is much shorter (4 hours). These
examples of system operation illustrate only the effect of operator input to the fuzzy supervisor. In addition,
the system states of speed and stress also influence the weight assignments for the low level control loops.

7.2.4 Application Conclusions

This successful application of fuzzy supervisory control to the startup problem illustrates the leverage of
combining plant operational requirements and operator expertise in one explicit fuzzy rule base.

Operator observations can be blended with existing fuzzy control rules to augment information not
available from sensors. For example, condensation rate observations, inferred by inspecting drain valve
conditions, will be necessary in cases where the drain valves are not instrumented with temperature sensors.
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Figure 9: System Performance for Slow Warmup Rate

8 Hybrid Control Applications

Beside its natural role as the language to express tradeoffs at the supervisory level, fuzzy logic has proven
to be an expressive control synthesis tool at lower levels. We have experienced large payoffs in combining
FLC technology with other control techniques such as conventional optimal control and neural network
inferencing.

We will use two examples to illustrate this synergy. The first is the turbine cycling control problem
in which FLC is combined with optimal control (see reference [Marcelle et al., 1994] for a more detailed
explanation). The second is the use of a fuzzy neural system to extract models from very sparse field data.

8.1 Conventional and Fuzzy Control: Optimal Load Cycling of Large Steam
Turbines

8.1.1 Problem Description

Increasing competition from non-utility power generators, growing electricity demand, and rising costs of
generation equipment have induced utilities to operate existing generation plant and equipment in the most
flexible and cost-effective manner possible [Armor et al., 1985]. The impact of these market forces has been
particularly significant on the operation of steam power plants.

Electric load demand varies in a periodic manner and hence it is very predictable. Well known factors
such as the time of the day, the day of the week, and the month of the year are directly correlated to the
load demand. These and other factors, along with historical data, are used by utilities to generate accurate
projected load profiles[Khotanzad et al., February 1993]. The minimum megawatt demand of the projected
load profile is called the base load; any demand above base load is termed peaking load. It is common for
peaking loads to be double the base load value at certain times in the projected load profile. To meet peaking
load demand, selected power plants are used to follow the large percentage load change ramps, while the
base load is supplied by plants running continuously at rated megawatt output.

Large steam power plants are increasingly required to perform double duty as both base load and peaking
units. The availability of less expensive base load power from independent producers and nuclear plants has
forced utilities to cycle their fossil power plants to economically meet peak demand. The trend toward
deeper and more frequent cycling of fossil units, in conjunction with the need to meet increasingly stringent
emissions and efficiency targets, has rejuvenated interest in advanced control methods as a means to satisfy
these demanding performance requirements.

Cycling of steam turbines induces large thermal stresses in the thick metal parts of both the boiler and
turbine as a result of steep steam-to-metal temperature gradients. Turbine rotor stress is the most critical of
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Figure 10: System Performance for Fast Warmup Rate

these stresses and limits load ramping rates. Elevated stress levels reduce equipment service life and increase
maintenance costs.

The control objective in power plant operation is to meet demand at minimal cost with available gen-
eration equipment. An effective control strategy must be able to directly assess the cost of different modes
of operation which can satisfy that power demand. The best control strategy satisfies the demand with the
lowest cost.

Current Solutions. There are two commonly used control modes for steam turbine operation: fixed
and sliding boiler pressure control[Hanzalek and Ipsen, November 7 11 1965). Under fixed boiler pressure
control, the turbine governor valve is used to control megawatt output while boiler pressure is kept nominally
constant. Fixed pressure control allows rapid load changes to be readily followed at the expense of large
thermal stresses. These stresses are induced in the turbine as a result of inlet steam temperature fluctuation.

Under sliding pressure control, boiler pressure is used to control megawatt output while the turbine
governor valve is kept wide open. Sliding pressure control causes minimal thermally induced stress, at the
expense of slow megawatt response. This response is slow because large boiler inertias must be overcome to
alter saturation conditions in order to ramp up pressure.

8.1.2 Solution Description

To produce good load tracking and minimum thermal stress it is desirable to simultaneously use both
methods of operation. The control strategy described in this section minimizes cumulative turbine stress
and load tracking error by coordinated control of both the turbine governor valve and boiler pressure. This is
accomplished while observing practical system constraints, such as valve rate limits and maximum operating
pressure.

Architecture Type. The controller architecture is illustrated in Figure 11. There are four key ideas
underlying the design of the controller:

e Future load demand from projected load profiles, which are accurate and readily available information
at power plants, is considered when deciding on the current control action. Optimal future performance
is therefore not jeopardized by focusing only on short term demand, and the possibility that current
modes of operation will result in future constraint violation is greatly reduced.

e Fuzzy logic is utilized to encode operator experience and intuition in establishing priority among
conflicting performance objectives. For example, load tracking can be traded off against stress mini-
mization or turbine valve throttling against varying boiler pressure. This intuition provides long term
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guidance for overall cycling cost optimization, and is transferred to the model predictive controller
(MPC) through weights in a cost function.

e Model predictive control is used to optimize the tradeoff between good load following and equipment
stress minimization during cycling operations [Martin and G. J. Silvestri, May 10 12 1988]. The MPC
algorithm finds the optimum valve/pressure setpoint trajectory which minimizes the cycling costs over
the short term. Long term overall performance is not sacrificed however, since the weights in the cost
function are chosen based on long term objectives.

e Hard system constraints such as maximum safe operating pressure or valve closure rate are explicitly
included in the algorithm and never violated. Soft constraints such as desired pressure at the end of
a load change are also included. These soft constraints and the priority given to satisfying them is
determined by fuzzy logic.
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Figure 11: Hybrid Fuzzy MPC Controller Architecture.

Model Predictive Control Algorithm. Model predictive control (MPC) has been successfully imple-
mented in several process and power plant control applications since the mid 1970’s. MPC is a method
of utilizing efficient optimization algorithms to solve complex control problems with critical input, output
and/or state constraints.

At the core of this control methodology 1s the assumption of availability of a high fidelity model of the
plant, process, or system to be controlled. In addition, the desired system trajectory is required. With this
system information, the optimization algorithm generates a sequence of input or controller commands which
simultaneously achieves the desired system trajectory and minimizes the cost of maintaining the plant on
that trajectory.

In this application, the plant model is obtained from a simulation using PC Trax, the power industry
standard simulation environment. The desired system trajectory is the projected load demand.

The model predictive control technique used for the optimal control algorithm is quadratic dynamic
matrix control (QDMC), of which a detailed presentation can be found in [Garcia and Morshedi, 1986]. The
essence of the algorithm is the minimization of the cost function J. This minimization can be expressed by
the quadratic program (QP)

. -
minJ = min {52(k)" He(k) - gk + Da(k)}

Solving the QP at each time k& produces a vector sequence z(k), which are the optimal controller setpoints
for tracking the desired trajectory at minimal cost. The QP matrix H contains the plant model A, the
actuator weighting matrix A, and plant output weighting matrix , . H is given by

H=AT T A4+ ATA
g(k + 1) is the QP gradient vector AT T e(k + 1), where the vector e(k + 1) is the error from the desired

system trajectory.
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Weights in , correspond to the system trajectory tracking errors in e(k 4 1) and the relative magnitude
of these weights determines the priority the QDMC algorithm places on reducing particular errors to zero.
Fach weight in the matrix A corresponds to a system actuator in z(k). The relative magnitude of these
weights determines the degree to which each actuator is used in minimizing the errors in e(k + 1). These
cost function weights are provided by the fuzzy logic knowledge base.

Fuzzy Logic Knowledge Base. The fuzzy logic knowledge base provides a ranking of system performance
priorities from a projected load profile. A load profile consists of alternating constant load stages and ramping
load stages. The profile is decomposed into groups of sequential stages, as in Figure 12.
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Figure 12: The decomposition of a typical load profile.

There are two types of groups: those that begin with a ramping load stage and those that begin with a
constant load stage.

The ramping load groups consist of three load stages, beginning and ending with ramping load stages.
They are characterized by initial loading rate, initial load change, constant load duration, subsequent loading
rate, and subsequent load change, as in Figure 13(a).
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Figure 13: Characterization of: (a) ramping load group, (b) constant load group.

The constant load groups consist of two load stages, beginning with a constant load stage and ending
with a ramping load stage. They are characterized by the present load, constant load duration, subsequent
loading rate, and subsequent load, as in Figure 13(b).

The ramping load groups allow the controller to respond to immediate cycling demand, while preparing
for subsequent cycling. The constant load groups are used as a means of bridging the gap between the
current system state and the desired state for executing the subsequent cycling operation.

Membership functions for the features of these groups have been defined; constant load lengths are either
short or long, loading rates are slow or fast, load changes are small or large, and loads are low, medium, or
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large.

These features have been coded into sets of rules which select cost function weights to minimize load
tracking error and turbine inlet temperature changes and to prioritize pressure and valve position changes.
The weights can be low, medium, or high. Large weights imply that small changes have large attendant
costs; changes in these variables are then suppressed by the QDMC optimization algorithm. For instance,
low weights on temperature changes mean that large temperature changes are permitted.

Load tracking error is always of high priority. Therefore it has been assigned a high weight for every
situation. Other cost function parameters can be assigned equal or lower priority by the fuzzy logic knowledge
base.

In addition, the rules determine target pressures to be achieved at end of constant load groups. These
targets are soft operating constraints, and the priority assigned to meeting them is also in the form of a
fuzzy weight.

To illustrate the operation of the fuzzy logic, consider a typical load cycling scenario illustrated in
Figure 14.
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Figure 14: Optimal multi-objective turbine metal temperature and load following control over time horizon.

The load profile consists of a gradual unloading with a medium load change, a constant load stage of
short duration, a fast reloading with a large load change, and a long constant load stage thereafter.

A heuristic strategy to satisfy the control objectives given the load profile in Figure 14 is to: unload using
a combination of sliding pressure and valve throttling to keep the turbine temperature high, induce minimal
levels of stress, provide good load following, and retain boiler potential energy for pending rapid loading;
gradually increase pressure and throttle turbine governor valve during the short constant load stage to boost
boiler potential energy in preparation for the rapid loading; and finally rapidly load by opening the governor
valve to meet the desired load demand. By coordinating boiler pressure and governor valve position, the
governor valve can be kept fairly wide open. Turbine inlet steam temperature changes are then kept small,
minimizing thermal stress.

To show the role of the fuzzy logic knowledge base, reconsider the example given above. At the beginning
of each stage in the load profile, the knowledge base is consulted to provide the MPC with a set of weights
for its cost function. These weights govern how the MPC executes the cycling stage. The knowledge base
also produces target pressures when constant load groups are encountered.
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The ramping load and constant load groups are further subdivided to account for the sign of the load
ramps in the ramping load stages. This refinement of the knowledge base results in approximately one
hundred rules that cover all possible load profiles.

8.1.3 Results and Analysis

The performance of the fuzzy-MPC controller is compared to that of both a fixed and a variable pressure
controller to demonstrate the derived benefits from coordinating these two modes during load cycling, trading
off stress against load tracking. In situations where load cycling ramps are steep, variable pressure operation
causes poor load tracking and constant pressure operation would induce large thermal stresses, the fuzzy-
MPC controller utilizes advance knowledge of the load profile to prepare for the turbine for the transition.
This minimizes stress while maintaining good load tracking.

The fuzzy-MPC controller is also compared with a standard MPC controller with fixed weighting matrices
and the same ten minute MPC horizon, highlighting the importance of the long term prediction of the fuzzy
logic in selecting weights for the current cycling operation. In situations where long constant loads are
followed by large load increases, which can occur during early morning hours, inappropriate short term
minimization of stress results in extremely poor long term load tracking performance as a result of ignoring
future demand.

Finally the fuzzy-MPC controller with a ten minute MPC horizon is compared to a fuzzy-MPC controller
with a two hour MPC horizon. By extending the MPC horizon, local performance is sacrificed with the
two hour horizon because the optimization algorithm equally weights performance two hours into the future
with performance at the next time step. The resulting controller setpoints for the next time step become
imprecise, because they are not tightly focussed on locally optimizing performance.

In short, the short horizon controller in contrast has effectively separated what are indeed separate issues.
The long term anticipative features provided by the fuzzy logic prevents myopic local optimization which
can lead to poor future performance. At the same time excellent local load following and stress minimization
is produced by the MPC algorithm with a ten minute predictive horizon.

8.1.4 Application Conclusions

A novel hierarchical coordinated control scheme for the cycling of steam turbinejs has been described. The
scheme consists of: a projected load demand profile, a model predictive control algorithm, and a higher
level fuzzy logic knowledge base. The load demand profile provides a desired trajectory for plant megawatt
output. The model predictive control algorithm determines the optimal actuator commands to track the
desired load profile and minimize the cost of power generation. The fuzzy logic knowledge base provides long
term optimization guidance by selecting present operational priorities based on present and future cycling
demand.

This hybrid controller produces good load tracking performance, as well as good long term operation cost
minimization. By utilizing fuzzy logic to scan over an extended horizon, the computational requirements for
the optimization algorithm are reduced without sacrificing long term performance. The technique can be
easily extended to include other performance metrics, such as fuel consumption and cycle life expenditure
limits. This hybrid approach is a generic technique for simultaneously achieving short term and long term
control objectives. It can be applied to any process, provided desired long term trajectories and heuristic
control insights exist. A more detailed explanation of this application can be found in reference [Marcelle et

al., 1994].

8.2 Neural and Fuzzy Systems: Oil Film Compensation in Steel Mill
8.2.1 Problem Description

In steel rolling mills, rollers exert force on a moving sheet of steel to control its thickness. The oil film
present on the roller bearings introduces a distortion which is sufficient to violate the tolerance limit on steel
thickness. To compensate for this, a correction factor has to be applied to the process. This correction (As)
depends on a number of factors, some of which are the roll’s rotational speed (w), the force () exerted by
the stand, and roll acceleration. A mapping is required that will determine As from the two most relevant
physical variables: w and F'.
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Since there is no analytical model of the process, all approaches have to make use of a limited set of data
points which specify the appropriate correction for some specific settings of the input variables w and F.
Fach such data point is collected experimentally, and at considerable cost. Only 64 data points (triplets of
values) are available, from which the input-output relationship (w, F') — As must be inferred.

In addition to modeling the mapping, it is desirable to reverse engineer the relationship by extracting
rules from the data. This helps in understanding the relationship, so that the same knowledge is used for
different rolls in different configurations. This 1s important, as collecting data for each roller and stand is
expensive. It is easier to generalize rules to other similar stands, than to do so for a lookup table. It is also
easier to add new rules or new inputs (such as roll acceleration) in order to make the compensation more
precise, once the knowledge has been extracted.

Current Solutions. The current solution uses experimental data in the form of a lookup table, or some
low-order polynomial approximation to it. This i1s not very accurate, but a high-order polynomial generalizes
poorly. A neural network could be used for the task but the dataset available is small; the net architecture
involves ad hoc choices; and the mapping so obtained would be opaque. Therefore, extending it or applying
it to other similar situations would be difficult. This extendibility is also a problem for polynomials.

8.2.2 Solution Description

We use a fuzzy logic inference system to compute the compensation. This contains a small set of rules which
captures the nonlinearities in the mapping. Instead of an expert for the rulebase, some training data is
available. Therefore, we need a methodology that combines the positive features of both fuzzy logic and
neural nets. It should capture concise and interpretable knowledge automatically from data.

Architecture Type. The architecture we use is that of a fuzzy logic inference system implemented as a
multilayer, feedforward neural network. One specific example of such a scheme is ANFIS [Jang, 1993]. The
ANFIS architecture consists of a 6-layer neural network. Each layer and node has a concrete interpretation
in terms of fuzzy inference, which makes the choice of hidden layer widths easy to initialize, interpret, and
modify. Figure 15(a) shows one configuration used for the oil film compensation problem.

Structure and Parameters. The six layers implement fuzzy inference for TSK-type rules. Antecedent
memberships have a soft trapezoidal shape, whereas the consequents are crisp linear functions of the two
inputs. The free parameters (membership functions and consequent coefficients) are modified iteratively
using least mean squared (LMS) optimization and backpropagation.

We propose using two to three membership functions per input dimension for this problem, since we
want to avoid overfitting on the small dataset. The ANFIS architecture can be initialized using the fuzzy
partition of input space. Data is normalized to lie in the unit hypercube, so that learning rates and other
meta-parameters need not be scaled. The architecture is simple and trains quickly. It provides a small
number of rules which can be interpreted linguistically. The key advantage of this approach is in the use of
a limited training set to form a smooth, interpolating function.
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8.2.3 Results and Analysis

The two inputs (speed and force) determine As. Two different granularities for the neuro-fuzzy system are
compared with polynomial fits. The fit metric is minimum least squares error. Most of the data is close to a
smooth surface which is flat in one region and slopes steeply in another region, though there are significant
deviations from this general rule.

Polynomial fits. The quadric is a bivariate, second-degree polynomial which fits the data with a minimum
RMS error of 0.06278 per data point over the 64 points. Figure 15(b) shows that the fit is smooth but quite
inaccurate as six degrees of freedom are not adequate to capture this particular nonlinearity.

ANFIS fits. The ANFIS system converges rapidly to a solution having an RMS error of 0.033816 for a 2x2
grid of 4 rules. Figure 15(¢) shows that the surface can have varying curvature in different regions and still
be reasonably smooth. However, one set of points forms a ridge in the data which accounts for most of the
error of the ANFIS surface. A more complex model (a 3x3 grid of 9 rules) gives lower training of 0.019647,
but the surface in Figure 15(d) has larger variation and worse generalization in order to get a better training
accuracy.

Analysis. The deterioration with higher complexity is a manifestation of overfitting. In this problem,
a 4-rule ANFIS strikes a reasonably good balance. If so desired, a 9-rule ANFIS may be slightly better,
but it shows some oscillations in the surface. The linguistic rulebase engineered from the data is easier to
understand and modify than a pure neural network or a polynomial model, due to the use of fuzzy sets and
fuzzy inference.

We have also tried other approaches such as clustering using fuzzy spheres and ellipsoids to extract the
rules. However, these may lead to a higher number of rules which are not always easy to interpret cognitively.

8.2.4 Application Conclusions

In summary, ANFIS extracted a few rules from data, providing transparency, smoothness, representation of
prior knowledge, and learning capability. This neural-fuzzy combination gave high accuracy with a highly
efficient training procedure. This procedure also leads itself to further fine-tuning, additions to the rulebase,
and the number of inputs considered. This is a great improvement over the current polynomial-fit solution
which is sensitive to small changes in the data.

The most important benefit of this reverse-engineered model is the potential reduction of the data set
required to derive a model for other rolling mill stands. The first model derived can be used to initialize
ANFIS for other stands, and the variations between stands can be accounted for with very little additional
data. Measurements can be concentrated on steep regions of the surface while ignoring flat regions. The
number of sampling points is thus reduced considerably. We are proposing to validate the results and
applicability of this method and its derived model with new data sets. Furthermore we would like to apply
this reverse-engineering technique to other “legacy-tables” which are currently used to represent unknown
nonlinear relationships among process variables in tabular form.

9 High Throughput Requirements: Power Electronics Control

Power electronics requires a mental shift of scale: actions that previously had taken seconds or milliseconds
to compute and implement are now required in microseconds; actuator values may vary by two or more orders
of magnitude from one end of the range of operation to the other. Simulations using interpreted fuzzy logic
controllers exhibited acceptable performance, but were not realizable in hardware because of throughput
constraints. With the compiler technology mentioned above, we can approximate the controller’s output
with a look-up table and realize the controller using conventional hardware. Alternatively, special purpose
hardware can be used to realize the fuzzy controller.
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9.1 Resonant Converter Control for Power Supplies
9.1.1 Problem Description

Power supplies require a regulator to maintain the output voltage or output power constant in light of
operational or environmental changes. For instance, the voltage of a power supply will tend to drop if load
current increases. Similarly, changes in temperature affect the delivered power output.

Most resonant converters experience a high degree of nonlinearity in their control characteristics. Tra-
ditional control methods have used linear controllers while sacrificing potential electrical performance of
the converters. Other approaches use complex nonlinear controls to obtain better performance; this often
requires expensive current and voltage sensors to monitor electrical state variables within a given resonant
converter.

A FLC provides an inexpensive nonlinear controller for obtaining good electrical performance. Such
an FLC can exhibit increased robustness in the face of changing circuit parameters, saturation effects, or
external disturbances.

The series resonant converter (SRC) in Figure 16 is a typical example of a nonlinear resonant system.
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Figure 16: Circuit diagram of series resonant converter.

The class of resonant converters consists of converters using inductor (L) and capacitor (C) elements
to assist in the switching operation of semiconductor devices. The additional L and C devices allow the
semiconductor devices to operate in a zero-voltage switching (ZVS) or zero-current switching (ZCS) mode
of operation. Many resonant converters have the additional advantage of lower electromagnetic interference
(EMI) than traditional pulse-width modulated (PWM) converters. While resonant converters have the above
advantages, they suffer from the disadvantage of difficulty in control.

A common resonant converter in usage today is the series resonant converter. Figure 16 shows a schematic
of such a converter; it is series-resonant because the resonant tank elements (L, and C,) are in series with
the electrical load. The semiconductor switches for this particular circuit can operate in one of two modes:
always below the resonant tank natural frequency (subresonant), or always above the natural frequency
(superresonant). For our purposes, we operate the series resonant converter in the superresonant mode of
operation.

As stated earlier, the series resonant converter has many advantages over PWM converters, but suf-
fers from the difficulty of a more complicated control method. While many PWM converters have very
simple linear transfer functions, the non-linear transfer function of the series resonant converter requires a
corresponding non-linear control algorithm to utilize the full capabilities of the converter.

The state equations for the series resonant converter are:
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The absolute value and sign functions create a highly nonlinear transfer function. This causes severe
control problems.
The approximate transfer function of the converter using a first harmonic analysis [Steigerwald, 1987] is
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Current Solutions. Many methods have been proposed to control the output voltage of the series resonant
converter. These range from a simple proportional-integral controller closed around the output voltage, to
elegant control methods [Oruganti and Lee, 1984; Sanders et al., 1989; Schwarz, 1975).

The lack of a low cost, good transient response control circuit is a major obstacle in the widespread use
of resonant converters. Our fuzzy logic control solution has the demonstrated advantage of very good control
characteristics, while still maintaining low cost and allowing for use of inexpensive sensors.

An example of a control method that provides good system response is that of [Oruganti and Lee, 1984].
This method provides good transient and steady state system response, but requires many expensive high
frequency sensors. It is critical to properly tune the complex multiloop system. It is not very robust
with respect to device characteristics that can change with operating conditions (e.g. resonant inductor
saturation). The method is also very complex, and requires state plane methods to describe the converter
control.

Methods of controlling the converter using in place circuit averaging (i.e. fourier) methods have been used
for control[Sanders et al., 1989]. These methods are computationally expensive, and provide less accuracy
than optimal control. In place averaging becomes less accurate as the converter switching function increases.

Some proposed control methods suffer from undesirable oscillatory behavior under certain operating
conditions. An example is ADSTIC control[Schwarz, 1975]. This method monitors the average current in
the resonant inductor against a reference signal. The control problem arise when the instantaneous inductor
current changes much faster than the control system can compensate.

There are many other control methods for a series resonant converter including capacitor voltage control[Ran-
ganathan et al., 1982], diode conduction control[King and Stuart, 1983], and many others.

9.1.2 Solution Description

Control Strategy. To determine the basic control law for this circuit, consider the case where the control
frequency, or F,, is restricted to values above the circuit’s resonant frequency. As F. is lowered towards the
resonant frequency, the amount of energy available to the output capacitor increases, leading to a higher
output voltage.

If the circuit were to be controlled in an open loop fashion, only a mapping from output voltage to F,
would be needed. However, the step response of the circuit degrades as F,. approaches the resonant frequency,
overshoot and output ripple increasing markedly. This demonstrates the need for some sort of closed loop
control.

The use of a linear controller leads to poor electrical performance at load and input voltage variations. Be-
cause the linear controller has been optimized for a particular operating condition, it exhibits wide variations
in overshoot, rise time, and output ripple for different operating points.

The changing gain of the resonant converter is compensated by the nonlinear structure of the FLC. This
provides improved converter operation largely independent of line and load variations.
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Figure 17: Hierarchical control scheme for series resonant converter.

9.1.3 Proposed FLC

Our approach uses this development environment and can be described in three stages: KB generation, KB
compilation, and microcontroller implementation.

KB Generation. To close the loop, a hierarchical scheme, composed of two low level fuzzy logic controllers
and a high level mode selector, is used to control the series resonant converter, as can be seen in Figure 17.
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Table 1: Ruleset for coarse controller. V.., along horizontal axis and dV,,,,. along vertical axis.

[ [NVL NL NM NS ZE PSS __PM__PL __ PVL |

PVL || ZE NS NM NM NL NVL NVL NVL NVL
PL PS ZE NS NM NM NL NL NVL NVL
PM PM PS ZE NS NM NM NM NL NVL
PS PM PM PS ZE NS NM NM NL NVL
ZE PL PM PM PS ZE NS NM NM NL
NS PVL PL PM PM PS ZE NS NM NM
NM PVL PL PM PM PM PS ZE NS NM
NL PVL PVL PL PL PM PM PS ZE PS
NVL || PVL PVL PVL PVL PL PM PM PS ZE

Table 2: Ruleset for fine controller. V..., along horizontal axis and dV,,,,. along vertical axis.

Both low level controllers are fuzzy logic proportional integral (PI) controllers; by appropriately adjusting
the scaling factors, membership functions, and rule sets of the fuzzy Pls, one has been configured as a coarse
controller, and the other as a fine controller.

The inputs of both low level fuzzy logic PI controllers are: output voltage error (Verror) and the change
in output voltage error (dVeppor ), where Vi pporis the difference of output voltage and output voltage setpoint
and dV,,,enis the difference of the current and previous values of V.,por. Both controllers output a change
in the control frequency (dF.). In accordance with the control strategy presented above, when the output
voltage is below the setpoint and is continuing to decrease, the control frequency should decrease. In terms
of Verror, dVerror, and dF ., a large positive value of V.,.,-and a large positive value of dV.,,,,should result
in a large negative value of dF.. The coarse controller is specifically designed to reduce V...,rat a rapid
rate, while the fine controller is designed to maintain steady state error within acceptable values. Each has
its own scaling factors for inputs and output.

This control law 1s encapsulated in the rule sets of Tables 1 and 2, where the three control variables have
been partitioned into nine terms each: negative very large (NVL), negative large (NL), negative medium
(NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), positive large (PL), and
positive very large (PVL). The rule set of the coarse controller (see Table 1) has two regions of large control
action regardless of dV ..., corresponding to the columns under labels NVL and PVL. On the other hand,
the rule set of the fine controller is similar to that of the MacVicar-Whelan rule set, as seen in Table 2.

To smoothly transition from coarse to fine control, a fuzzy logic mode selector is used to meld the output
of the coarse and fine controls, based upon the magnitude of V.,.o-. The coarse controller is dominant to
within some percentage of the setpoint, at which point the mode selector begins to lower the weighting of
the coarse controller, while increasing the weighting of the fine controller. When the output voltage is within
a small percentage of the setpoint, the coarse controller is fully disabled, and the fine controller is allowed
to reduce Vpporto zero.

Once the mode selector has blended the outputs of the low level controllers, the resulting value of dF.is
then integrated to give a new control frequency. However, control frequencies must stay above the natural
frequency of the resonant converter so that the basic control law remains valid, while remaining below a
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maximum practical switching frequency. Thus, F, is clamped between a minimum and maximum value
before being passed to the actuator.

KB Compilation. Once the KBs for the mode selector and both of the low level controllers have been
determined, they are then compiled into fast look-up tables. To accomplish this, the hierarchical control
scheme can be thought of as a single controller; iterating through the input space defined by V.p..orand
dV.rorand recording the resulting values of dF . then gives a desired look-up table relating control inputs to
control outputs.

Microcontroller Implementation. For an FLC-based frequency controller, if a control action is taken
once in the period defined by 1/F., and F. operates in the region of hundreds of kiloHertz, control fre-
quency actions must be determined within microseconds. In other resonant circuit topologies, the switching
frequency is further increased to the megaHertz region, creating even tighter throughput requirements.
Therefore, this implementation necessitates a relatively fast microcontroller.

Each time step, V¢ ppopand dV,,.o-are calculated from sensor readings. The resulting values are used to
locate the corresponding value of dF.in the look-up table compiled above. After integrating dF.and clamping
the resulting control frequency, the controller then passes that value to the actuator.

9.1.4 Results, Analysis, and Conclusions

Performance Traditional power convert controls use fixed gain compensators. Typically they exhibit slow
system dynamic responses as a price for ensuring stability under all load conditions.

On the other hand, FLC controllers have much faster dynamic responses, while maintaining stable per-
formance under all load conditions. These results are due to the FLC’s flexible design architecture: the
power converters are optimized for different operating points (with different corresponding low-level nonlin-
ear controllers); for a given state, the hierarchical controller decides their level of applicability and provides
a smooth interpolation of the outputs of the low-level controllers.

SRC Results The fuzzy logic controller exhibits good performance for a number of different operating
conditions. We used a sequence of eight setpoints starting at 125KV and ramping down to b0KV (typical
X-ray machine voltage regimes). In all cases, we observed very short rise times followed by minimal or no
overshooting/undershooting.

Implementation The development of a FLC using a development environment and a compiler [Bonissone,
1991b] results in a general architecture composed of an address generator, a lookup table ROM, and a fast
microprocessor with limited amount of RAM. Following this concept we implemented a hardware prototype of
the fuzzy controller for a more complex circuit topology, the Single-Ended Parallel Multi-Resonant Converter
(SEP-MRC), with a switching frequency of about 500KHz. This demonstrates the generality of the FLC
architecture, in which the control of other resonant converter topologies can be achieved by simply replacing
the content of the compiled lookup table. A more detailed description of the SEP-MRC application can be
found in reference [Bonissone et al., 1985).

10 PART II Conclusions: FLC Applications

10.1 Summary

From a sample of our own experience, partially described in Sections 7, 8, and 9, we have described the
synthesis of nonlinear controllers for a variety of dynamic systems, spanning a large space of cost, performance
and throughput requirements.

We have emphasized the role of FLC at the supervisory level to provide smooth mode melding (instead
of mode selection) by choosing among low-level conventional controllers [Badami et al., 1994; Bonissone and
Chiang, 1995]. or to provide a nonlinear gain schedule for conventional low-level PID controllers[Zhe et al.,
1993]. We have shown the synergy resulting from combining FLC with conventional control techniques,
such as optimal control or with data-driven learning techniques, such as back-propagation. Finally, we have
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described the use of FLCs in high throughput applications, such as power electronics, and we have illustrated
the role of a FLC compiler to realize the controller using off-the-shelf hardware.

10.2 Comments

We have demonstrated that FLC technology is a powerful control synthesis technique that complements other
analytical or data-driven techniques. We have discussed FLCs’ applicability to a vast gamut of applications,
spanning a large range of cost, performance, and throughput requirements.

We will now focus on the combination of FLCs with other emerging technologies, such as neural network
and genetic algorithms, that will further improve the FLCs cost/benefit ratio when applied to many complex
control problems.
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Figure 18: Hard and Soft Computing

As we attempt to solve real-world problems, however, we realize that they are typically ill-defined sys-
tems, difficult to model and with large-scale solution spaces. In these cases, precise models are impractical,
too expensive, or non-existent. The relevant available information is usually in the form of empirical prior
knowledge and input-output data representing instances of the system’s behavior. Therefore, we need ap-
proximate reasoning systems capable of handling such imperfect information. Soft Computing technologies
provide us with a set of flexible computing tools to perform these approximate reasoning and search tasks.

In the remaining of this report we will describe and contrast Soft Computing technology components:
fuzzy and probabilistic reasoning, neural networks, and genetic algorithms. Then we will illustrate some
examples of hybrid systems developed by leveraging combinations of these components, such as the control
of GAs and NNs parameters by FL; the evolution of NNs topologies and weights by GAs or its application to
tune FL controllers; and the realization of FL controllers as NNs tuned by backpropagation-type algorithms.
Figure 19 provides a graphical summary of the these hybrid algorithms and their components. The interest
reader should consult reference [Bouchon-Meunier et al., 1995] for an extensive coverage of this topic.
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Figure 19: Soft Computing Overview

12 Probability and Fuzziness

12.1 Distinctions

Randomness and fuzziness capture two rather different types of uncertainty and imprecision. In randomness,
the uncertainty is derived by the nondeterministic membership of a point from the sample space in a well-
defined region of that space. The sample space describes the set of possible values for the random variable.
The point is the outcome of the system. The well-defined region represents the event whose probability we
want to predict. The characteristic function of the region dichotomizes the sample space: either the point
falls within the boundary of the region, in which case its membership value in the region is one and the event
is true, or it falls outside the region, in which case its membership value in the region is zero and the event is
false. A probability value describes the tendency or frequency with which the random variable takes values
inside the region.

On the other hand, in fuzziness the uncertainty is derived from the partial membership of a point from
the universe of discourse in an imprecisely defined region of that space. The region represents a fuzzy set.
The characteristic function of the fuzzy set does not create a dichotomy in the universe of discourse. It
defines a mapping from such universe into the real-valued interval [0,1] instead of the set {0,1}. A partial
membership value does not represent any frequency. Rather, it describes the degree to which that particular
element of the universe of discourse satisfies the property that characterizes the fuzzy set [Zadeh, 1965].

12.2 Interpretations

Not all probabilities have frequentistic interpretations. For example, subjective probabilities [DeFinetti,
1937] can be defined in terms of the willingness of a rational agent to accept a bet, in which the ratio
of 1ts associated cost and prize reflects the probability of the event. Similarly, fuzzy membership values
may have more than one interpretation, ranging from possibility values (fuzzy restrictions that act as an
elastic constraints on the value that may be assigned to a variable [Zadeh, 1978]), to similarity values (the
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complement of the distances among possible worlds) [Ruspini, 1989; 1990], to desirability or preference values
(the partial order induced by the membership function on the universe of discourse) [Dubois and Prade, 1992].

12.3 Probabilistic Reasoning Systems

The earliest probabilistic techniques are based on single-valued representations. These techniques started
from approximate methods, such as the modified Bayesian rule [Duda et al., 1976] and confirmation theory
[Shortliffe and Buchanan, 1975], and evolved into formal methods for propagating probability values over
Bayesian Belief Networks [Pearl, 1982; 1988b]. Another trend among the probabilistic approaches is rep-
resented by interval-valued representations such as Dempster-Shafer theory [Dempster, 1967; Shafer, 1976;
Smets, 1991]. In all approaches, the basic inferential mechanism is the conditioning or updating operation.
We will briefly review two main currents within probabilistic reasoning: Bayesian Belief Networks, and
Dempster-Shafer’s theory of belief.

12.3.1 Bayesian Belief Networks

Over the last ten years, considerable efforts have been devoted to improve the computational efficiency
of Bayesian belief networks for trees, poly-trees, and Directed Acyclic Graphs (DAGs) such as influence
diagrams [Howard and Matheson, 1984], [Schachter, 1986], [Agogino and Rege, 1987].

Exact Methods Approximate Methods
A Sa
Trees Simulations Bounding

Polytrees Markov simulation|| Two—level with
(Gibbs sampling) ||noisy OR gates

Multiply — Forward Branch and
connected propagation Bound Search
Networks (logic sampling)

Figure 20: Taxonomy of Inference Mechanisms for Bayesian Belief Networks
An efficient propagation of belief on Bayesian Networks has been originally proposed by J. Pearl [Pearl,

1982; 1986a). 1 n his work, Pearl describes an efficient updating scheme for trees and, to a lesser extent, for
poly-trees [Kim and Pearl, 1983; Pearl, 1986b; 1988a]. However, as the graph complexity increases from trees
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to poly-trees to general graphs, so does the computational complexity. The complexity for trees is O(n?),
where n is the number of values per node in the tree. The complexity for poly-trees is O(K™), where K is
the number of values per parent node and m is the number of parents per child. This number is the size of
the table attached to each node. Since the table must be constructed manually and updated automatically,
it is reasonable to assume that the the value of m will be small and so will the table. The complexity for
multiconnected graphs is O(K™), where K is the number of values per node and n is the size of the largest
nondecomposable subgraph. To handle such complexity, techniques such as moralization and propagation
in a tree of cliques [Lauritzen and Spiegelhalter, 1988] and loop cutset conditioning [Suermondt et al., 1991;
Stillman, 1991] are typically used to decrease the value of n, decomposing the original problem represented
by the graph into a set of smaller problems or subgraphs.

When this problem decomposition process is not possible, exact methods are abandoned in favor of ap-
proximate methods. Among these methods the most common are clustering, bounding conditioning [Horvitz
et al., 1989], and simulation techniques, such as logic samplings and Markov simulations [Henrion, 1989)].
This is illustrated in Figure 20

12.3.2 Dempster-Shafer Theory of Belief

Belief functions have been introduced in an axiomatic manner by Shafer [Shafer, 1976]. Their original
purpose was to compute the degree of belief of statements made by different sources or witnesses from a
subjective probability of the sources reliability.

Many other interpretations of belief functions have been presented, ranging from functions induced from
a probability measure by multivalued mappings [Dempster, 1967] or by compatibility relations [Lowrance et
al., 1986], to probability of provability [Pearl, 1988a), to inner measures [Ruspini, 1987; Fagin and Halpern,
1989], to a nonprobabilistic model of transferable belief [Smets, 1991].

All interpretations share the same static component of the theory: the Mobius Transform, which defines
a mapping from basic probability assignments, masses assigned to subsets of the frame of discernment, to the
computation of the lower bound (belief) of a proposition, a region defined in the same frame of discernment.
An inverse Mobius transform can be used to recover the masses from the belief. All these interpretations
also share the same definition of the upper bound, usually referred to as plausibility.

More specifically, this formalism defines a function that maps subsets of a space of propositions © on
the [0,1] scale. The sets of partial beliefs are represented by mass distributions of a unit of belief across
the propositions in ©. This distribution is called basic probability assignment (bpa). The total certainty
over the space i1s 1. A non-zero bpa can be given to the entire space © to represent the degree of ignorance,
which models the source lack of complete reliability. Given a space of propositions ©, referred to as frame
of discernment, a function m : 2 — [0, 1] is called a basic probability assignment if it satisfies the following
three conditions:

m(¢) =0 where ¢ is the empty set (12)
0<m(A) <1 (13)
> m(4)=1 (14)
ACO

The certainty of any proposition A is then represented by the interval [Bel(A), P*(A)], where Bel(A)
and P*(A) are defined as:

Bel(A)= > m(x) (15)

$#TCA
Pr(A)= > m(x) (16)
TNAZ
where  C ©. From the above definitions the following relation can be derived:
Bel(A) =1—- P*(=A) (17)
Equations 15 and 16 represent the static component of the theory, which is common to all interpretations.
However, these interpretations do not share the same dynamic component of the theory: the process of

updating (i.e., conditioning or evidence combination). This issue has been recently addressed by various
researchers [Halpern and Fagin, 1990; Smets, 1991].
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As for the case of belief networks, a variety of exact and approximate methods have been proposed to
perform inferences using belief functions. Typically, the exact methods require additional constraints on the
structure of the evidence. Figure 21 illustrates a taxonomy of Dempster-Shafer inference mechanisms.

Exact Methods Approximate Methods
. A
Singletons and Tree | |Bayesian| | Fuzzy
complements
[Barnett 81] [Gordon & Dubois &
Shortlifte 85) [V00rPraak 89] IgraLclfe 51901
Trees o
[Shafer & Logan 87] Graph Decomposition
" (Hypergraphs/Hypertrees)

Graphs —

[Shenoy & Shafer 90]

[\

| Fast Mobius Transform
[Kennes & Smets 91]

Figure 21: Taxonomy of Inference Mechanisms for Dempster-Shafer

Inference Mechanism: Conditioning Given the beliefs (or masses) for two propositions A and B,
Dempster’s rule of combination can be used, under assumptions of independence, to derive their combined
belief (or mass).

If my and mgy are two bpas induced from two independent sources, a third bpa, m(C'), expressing the
pooling of the evidence from the two sources, can be computed by using Dempster’s rule of combination:

> ma(Ai) - ma(By)

L= > mi(Ai) - ma(By)

A;NB;=¢

m(C) =

(18)

Dempster’s rule allows us to consider and pool discounted pieces of evidence, i.e. evidence whose belief
can be less than one. On the other hand, conditioning can only be done with certain evidence. If proposition
B is true (i.e., event B has occurred), then Bel(B) = 1 and from Demspster rule of combination, we can
derive a formula for conditioning A given B, Bel(A | B):

Bel(AU-B) — Bel(—B)

Bel(A | B) = e (19)
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This expression is compatible with the interpretation of Belief as evidence, and as inner measure. However,
this expression is not compatible with the interpretation of belief as the lower envelope of a family of
probability distributions. Under such interpretation, the correct expression for conditioning is

B Bel(AN B)
Bel(A ]| B) = Bel(AN B) + PI(=AN B) (20)

The interested reader is referred to reference [Shafer, 1990] for a clear explanation and an updated
bibliography on belief functions.

All above probabilistic methods use the operation of conditioning to update the probability values and
perform a probabilistic inference. We will now switch our focus to fuzzy logic based systems, a class of
approximate reasoning systems whose inference mechanism is not conditioning, but an extension of modus-
ponens.

12.4 Fuzzy Logic Based Reasoning Systems

Fuzzy logic approaches are based on a fuzzy-valued representation of uncertainty and imprecision. Typi-
cally they use Linguistic Variables [Zadeh, 1978; 1979] to represent different information granularities and
Triangular-norms to propagate the fuzzy boundaries of such granules [Schweizer and Sklar, 1963; 1983;
Dubois and Prade, 1984; Bonissone, 1987; Bonissone and Decker, 1986; Bonissone et al., 1987b].

The basic inferential mechanism used in fuzzy reasoning systems is the generalized modus-ponens [Zadeh,
1979], which makes use of inferential chains (syllogisms).

12.4.1 Triangular norms: A Review

Since Triangular norms play such an important role in the definition of the generalized modus ponens, we
will provide the reader with a brief overview of these operators. Triangular norms (T-norms) and their dual
T-conorms are two-place functions from [0,1]x[0,1] to [0,1] that are monotonic, commutative and associative.
They are the most general families of binary functions that satisfy the requirements of the conjunction and
disjunction operators, respectively. Their corresponding boundary conditions satisfy the truth tables of the
Boolean AND and OR operators.

Any triangular norm T'(A, B) falls in the interval T, (A, B) < T(A, B) < Min(A, B), where

min(4, B) if max(A4, B) = 1,

Tu(4,B) = { 0 otherwise (21)

The corresponding DeMorgan dual T-conorm, denoted by S(A, B), is defined as
S(A,B)y=1-T(1-A,1-DB) (22)

Tw(A, B) is referred to as the drastic T-norm (to reflect its extreme behavior) and is clearly non-continuous.
By changing one of the axioms of the T-norms [Schweizer and Sklar, 1963], we can derive a subset of T-norms,
referred to as copulas, such that any copula T'(A, B) falls in the interval Maz(0,A+ B — 1) < T(A, B) <
Min(A, B).

In the original version of fuzzy logic proposed by Zadeh [Zadeh, 1965], the conjunction and disjunction
operators are the minimum and maximum, i.e. the upper and lower bounds of the T-norm and T-conorm
ranges, respectively. These operators are the only ones satisfying distributivity and idempotency [Bellman
and Giertz, 1973]. Other selection of T-norms and T-conorms provide different logics with different properties
[Klement, 1981; Bonissone and Decker, 1986].

Perhaps the most notable selection is the one based on the lower bound of the T-norms (Lukasiewicz
T-norm) [Lukasiewicz, 1967] and its dual T-conorm. This logic satisfies the law of the excluded-middle (at
the expense of distributivity) and is the basis of MV-Algebras [Di Nola and Gerla, 1986]. In the fuzzy logic
community this algebra was originally referred to as bold algebra [Giles, 1981]. Mundici [Mundici, 1995] has
provided interesting semantics for this algebra, presenting it as a decision making (voting) paradigm in a
context where the source of information is allowed to have up to a known maximum number of k lies (errors).
This is also known as Ulam’s game with & lies and has direct applications to on-line error correcting code.

Fuzzy reasoning systems can be used in many applications, from advice providing expert systems, to
soft constraint propagation, to decision making systems, etc. Within this paper we will limit our scope to
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Fuzzy Controllers (FCs), reasoning systems composed of a Knowledge Base (KB), an inference engine, and
a defuzzification stage. The KB is comprised by a rule base, describing the relationship between state vector
and output, and by the semantics of the linguistic terms used in the rule base. The semantics are established
by scaling factors delimiting the regions of saturation and by termsets defining a fuzzy partition in the state
and output spaces [Bonissone and Chiang, 1993].

The concept of a fuzzy controller was initially outlined by Zadeh [Zadeh, 1973] and first explored by
Mamdani [Mamdani and Assilian, 1975; Kickert and Mamdani, 1978] in the early seventies. Currently it
represents one of the most successful applications of fuzzy logic based systems [Bonissone et al., 1995].

12.5 Complementarity

The distinction between probability and fuzziness has been presented and analyzed in many different pub-
lications, such as [Bezdek, 1994; Dubois and Prade, 1993; Klir and Folger, 1988] to mention a few. Most
researches in probabilistic reasoning and fuzzy logic have reached the same conclusion about the complemen-
tarity of the two theories [Bonissone, 1991a]. This complementarity was first noted by Zadeh [Zadeh, 1968],
who, in 1968, introduced the concept of the probability measure of a fuzzy event. Let A be a fuzzy event,
i.e, a subset of a finite sample space X. Let also x; represent the ith singleton in such a space and p(#;) be
its probability. Then P(A), the probability of the fuzzy event A, is the weighted sum of the probability of
each singleton in the sample space multiplied by p14(#;), the partial degree to which the singleton #; belongs
to the fuzzy subset A, i.e.:
P(A) = 3" plai) x pa(w) (23)
r,€X
In 1981 Smets, extended the theory of belief functions to fuzzy sets by defining the belief of a fuzzy
event [Smets, 1981; 1988]. Let A be a fuzzy event of a finite sample space X. Let also S; represent the ith
available piece of evidence, i.e. a non-empty subset of the frame of discernment with an assigned probability
mass m(S;). Then Bel(A), the belief of the fuzzy event A, is the weighted sum of the probability masses of
each piece of evidence multiplied by the minimum degree to which the evidence supports the event, i.e. it is
included in the fuzzy region defining the event:

Bel(A)= Y m(s)x N\ pale;) (24)

$#S CX T €S

We have established the orthogonality and complementarity between probabilistic and possibilistic meth-
ods. Given their duality of purpose and characteristics, it i1s clear that these technologies ought to be regarded
as being complementary rather than competitive.

13 Neural Networks

Fuzzy logic enables us to translate and embed empirical, qualitative knowledge about the problem to be
solved into reasoning systems capable of performing approximate pattern matching and interpolation. Fuzzy
logic however does not have adaptation or learning features, since it lacks the mechanism to extract knowledge
from existing data. Of course, it could be argued that it is possible to use fuzzy clustering methods, such
as Fuzzy C-means [Bezdek and Harris, 1978; Bezdek, 1981] to provide more accurate definitions of the
membership functions of the state and output variables, in a typical unsupervised mode. However, FL
systems are not able to learn from examples of input-output pairs, in a typical supervised mode.

On the other hand, this is the typical characteristic of Neural Networks, another Soft Computing tech-
nology. NNs and Perceptorns started in the early 60s as algorithms to train adaptive elements. Their origins
can be traced to the work of Rosenblatt on spontancous learning [Rosenbaltt, 1959)], Stark’s work on com-
petitive learning [Stark et al., 1962] and Widrow’s development of ADALINE [Widrow and Hoff, 1960] and
MADALINE algorithms.

Typically NNs are divided into Feed-Forward and Recurrent/Feedback networks. The Feed-Forward
networks include single-layer perceptrons, multilayer perceptrons, and Radial Basis function nets (RBFs)
[Moody and Darken, 1989], while the Recurrent nets cover Competitive networks, Kohonens Self Organizing
Maps [Kohonen, 1982], Hopfield nets [Hopfield, 1982], and ART models [Carpenter and Grossberg, 1983;
1987; 1990]. While feedforward NNs are used in supervised mode, recurrent NNs are typically geared toward
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unsupervised learning, associative memory, and self-organization. In the context of our paper we will only
consider feedforward NNs. Given the functional equivalence already proven between RBF and fuzzy systems
[Jang et al., 1993] we will further limit our discussion to multilayer feedforward nets.

A feedforward multilayer NN is composed of a network of processing units or neurons. Each neuron
performs the weighted sum of its input, using the resulting sum as the argument of a non-linear activation
function. Originally the activation functions were sharp thresholds (or Heavyside) functions, which evolved
to piecewise linear saturation functions, to differentiable saturation functions (or sigmoids), and to gaussian
functions (for RBFs). For a given interconnection topology, NNs train their weight vector to minimize a
quadratic error function.

Prior to backpropagation [Werbos, 1974] there was no sound theoretical way to train multilayers, feedfor-
ward networks with nonlinear neurons. On the other hand single-layer NNs (perceptrons) were too limited,
as they could only provide linear partitions of the decision space. While their limitations were evidenced by
Minsky and Papert [Minsky and Papert, 1969], Hornik et al. proved that a three-layers NN were universal
functional approximators [Hornick et al., 1989]. Therefore, the advent of BP made multilayers feedforward
NNs extremely popular. Since then, most of the research work on NNs has been devoted to improve their
converge speed: by using estimates of the second derivatives, under simplifying assumptions of a quadratic
error surface, as in Quickprop [Fahlman, 1988]; by changing the size of the step size in a self-adapting fashion
such as SuperSAB [Tollenaere, 1990]; or by using second order information, as in in the Conjugate Gradient
Descent method, [Moller, 1990]. An excellent history of Adaptive NNs is provided by Widrow in reference
[Widrow, 990].

13.1 Learning

In the context of this paper, we will consider learning only in the context of Soft Computing. Therefore,
we will limit our discussion to structural and parametric learning, which are the counterpart of system
identification and parameter estimation in classical system theory. For a fuzzy controller learning (or tuning)
entails defining (or refining) the knowledge base (KB), which is composed of the a parameter set (state and
output scaling factors, state and output termsets) and a structure (the rule base). The parameter set describe
the local semantics of the language and the rule set describe the syntactic mapping. For Neural Networks,
structural learning means the synthesis of the network topology (i.e., the number of hidden layers and nodes),
while parametric learning implies determining the weight vectors that are associated to each link in a given
topology.

Learning can be facilitated by the availability of complete or partial feedback. In the case of total feedback
(a teacher providing an evaluation at every iteration or a training set describing the correct output for a
given input vector) we have supervised learning. When only partial feedback is available (every so often we
are told if we succeed or failed) we have reinforcement learning. When no feedback is available we have the
case of unsupervised learning.

13.1.1 Supervised Learning

In the context of supervised learning, ANFIS (Adaptive Neural Fuzzy Inference Systems) [Jang, 1993] is a
great example of an architecture for tuning fuzzy system parameters from input-output pairs of data. The
fuzzy inference process is implemented as a generalized neural network, which is then tuned by gradient
descent techniques. It is capable of tuning antecedent parameters as well as consequent parameters of TSK-
rules which use a softened trapezoidal membership function. It has been applied to a variety of problems,
including chaotic timeseries prediction and the IRIS cluster learning problem. As a fuzzy system, it does not
require a large data set and it provides transparency, smoothness, and representation of prior knowledge. As
a neural system, 1t provides parametric adaptability.

13.1.2 Steepest Descent

Backpropagation neural-net based techniques usually depend on a differentiable input-output map, which
restricts their applicability. For controllers, it is practical to evaluate their performance over the whole
trajectory rather than individual states, and a few such evaluations provide a crude local snapshot of the
performance surface as a function over parameter space. This snapshot can then guide a steepest descent
algorithm to determine the two scaling factors (K, and K;) in the design of a fuzzy logic PI controller.
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The evaluation function is a metric based on the total deviation of the actual trajectory from an ideal
trajectory, which is crafted based on the specifications of the controller, such as rise time, settling time,
steady-state error band and steady-state oscillation. The metric can be quite flexible if desired.

The method uses a logarithmic search of the parameter space followed by a linear one to identify the
appropriate scaling factors. The same method can be applied to other critical parameters such as the centers
of the output membership functions. For low-dimensional searches, this method can be applied easily to any
kind of system and remains reasonably efficient, since it is easy to parallelize.

13.1.3 Reinforcement Learning

Reinforcement learning exploits the availability of expert knowledge in the area of exerting control actions
as well as evaluating system state. Approximate linguistic rules can be used to initialize the two knowledge
bases which deal with action selection and action evaluation. The resulting system is capable of learning
to control a complex, dynamic system in the absence of desired output, with only a delayed, somewhat
uninformative reinforcement signal from the environment. This system has been used to control systems
from the inverted pendulum to the space shuttle’s attitude control [Berenji and Khedkar, 1992]

13.1.4 Structural Learning: Rule Clustering

The previously mentioned systems deal mainly with parameter identification once the structure has been
fixed. However, identifying the number of rules in a fuzzy system or fixing the granularity of the fuzzy
partition of the input space is a structure identification problem which also needs to be solved. If expert
rules are not available, then other known properties of the unknown function may be available and could
be exploited. For instance, in industrial settings, many mappings are implemented as approximations using
look-up tables or analytic interpolation functions. If a fuzzy system can be reverse engineered from such
information, then knowledge extraction can help to refine or upgrade the system.

If analytical information about the mapping is available, then various algorithms can be used to extract
a near-optimal fuzzy rulebase which is equivalent to the mapping. On the other hand, the function can
be sampled for data points or the look-up table can be used to generate the data points according to a
desired distribution. If there is sufficient data, it 1s possible to adapt neural network clustering methods
to extract clusters in product space which correspond to fuzzy rules. The method uses the joint criteria of
incompleteness as well as accuracy in prediction to add rules to the database and then conducts a deletion
phase to prune redundant knowledge. This system extracts a set of rules from a single online pass over
a reasonably small dataset. It can then be tuned by using the same gradient optimization techniques to
tune the parameters as have been discussed above. The reader is referred to [Berenji and Khedkar, 1993;
Khedkar, 1993] for a detailed discussion of reinforcement learning and rule clustering.

14 Evolutionary Computing

In the previous section we discussed supervised learning of fuzzy system parameters. Since gradient descent
techniques may become mired in local minima, global search techniques have also been explored. We will
focus our attention on a randomized global search paradigm, which is commonly referred to as Evolutionary
Computation (EC). This paradigm covers several variations, such as Evolutionary Strategies (ES), addressing
continuous function optimization [Rechenberg, 1965; Schwefel, 1965]; Evolutionary Programs (EP), gener-
ating finite state automata that describe strategies or behaviors [Fogel, 1962; Fogel et al., 1966]; Genetic
Algorithms (GAs), providing continuous and discrete function optimization, system synthesis, tuning, test-
ing, etc. [Holland, 1975]; and Genetic Programming (GP), evolving computer programs to approximately
solve problems, such as generating executable expressions to predict timeseries, etc. [Koza, 1992].

As noted by Fogel ([Fogel, 1995], page 103) in his historical perspective and a comparison of these
paradigms: ...the three main lines of investigation - genetic algorithms, evolution strategies, and evolutionary
programming - share many similarities. Each maintains a population of trial solutions, imposes random
changes to those solutions, and incorporate selection to determine which solutions to maintain wn future
generations.... Fogel also notes that GAs emphasize models of genetic operators as observed in nature,
such as crossing-over, inversion, and point mutation, and apply these to abstracted chromosomes. while ES
and EP emphasize mutational transformations that maintain behavioral linkage between each parent and its
offspring. In this paper, we will limit our analysis to Genetic Algorithms.
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14.1 Genetic Algorithms

Genetic Algorithms (GAs) are perhaps the most widely known of the above paradigms. In the context of
designing fuzzy controllers, it is relatively easy to specify an evaluation of the trajectory or the controller as
a whole, but it is difficult to specify desired step-by-step actions, as would be required by supervised learning
methods. Thus Genetic Algorithms can use such an evaluation function to design a fuzzy controller.

GAs are a new programming paradigm that has been applied to much more difficult (NP-hard) op-
timization problems such as scheduling with very promising results. GAs encode the solution to a given
scheduling problem in a binary- (or real-valued) string [Holland, 1975; Goldberg, 1978; Michalewicz, 1994].
Fach string’s element represents a particular feature in the solution. The string (solution) is evaluated by a
fitness function to determine the solution’s quality: good solutions survive and have off-springs, while bad
solutions are discontinued. Solution’s constraints are modeled by penalties in the fitness function or encoded
directly in the solution data structures. To improve current solutions, the string is modified by two basic
type of operators: cross-over and mutations. Cross-over are deterministic operators that capture the best
features of two parents and pass it to a new off-spring string. Mutations are probabilistic operators that try
to introduce needed solutions features in populations of solutions that lack such feature.

Some GAs have exhibited exceptional performances in large scale scheduling problems. However, many
unanswered questions still remain. Design questions range from the type of solution and constraints encoding
to probability of mutation, definition of fitness function, desired type of cross-over operations (to encode
context dependent heuristics), etc. More fundamental questions include the applicability conditions of GAs,
comparative analyses with other scheduling techniques, and, in general, a deeper understanding of the way
G As explore the solution space.

14.2 Simulated Annealing

A special case of the genetic algorithm approach is the method known as Simulated Annealing (SA), which is
considered a probabilistic hill-climbing technique [Romeo and Sangiovanni-Vincentelli, 1985]. SA is a more
restricted version of GAs, with well understood convergence properties. Simulated Annealing can be seen
as a GA 1n which crossovers are disabled and only mutations implemented by the probability of jumping
the energy barrier are allowed. Furthermore, the population size is typically one. SA is also a global
search strategy and can work in very high-dimensional searches, given enough computational resources. An
interesting hybrid algorithm that spans the space from GAs to SAs has been proposed by Adler. In his
algorithm the GAs operators use Simulated Annealing to determine if the newly generated solution is better
than the best of its parents (in the case of the crossover operator) or better than the original solution (in
the case of the mutation operator) [Adler, 1993].

15 Hybrid Algorithm: The symbiosis

Over the past few years we have seen an increasing number of hybrid algorithms, in which two or more of Soft
Computing technologies (FL, NN, GA) have been integrated to improve the overall algorithm performance.
In the sequel we will analyze a few of such combinations.

15.1 NN controlled by FL

Fuzzy logic enables us to easily translate our qualitative knowledge about the problem to be solved, such as
resource allocation strategies, performance evaluation, and performance control, into an executable rule set.
As aresult, fuzzy rule bases and fuzzy algorithms have been used to monitor the performance of NNs or GAs
and modify their control parameters. For instance, FL controllers have been used to control the learning
rate of Neural Networks to improve the crawling behavior typically exhibited by NNs as they are getting
closer to the (local) minimum. More specifically, the typical equation for the weight changes in a NN is:

AW, = —n9VE(W,) + AW, _1 (25)

in which AW,, represents the changes to the weight vector W,, E(1,) is the error function at the nth
iteration, 1 is the learning rate and « is the momentum. The learning rate 7 is a function of the step size k
and determines how fast the algorithm will move along the error surface, following its gradient. Therefore
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the choice of 5 has an impact on the accuracy of the final approximation and on the speed of convergence.
The smaller the value of i the better the approximation but the slower the convergence. Jacobs [Jacobs,
1988] established a heuristic rule, known as the Delta-bar-delta rule to increase the size of 5 if the sign of VE
was the same over several consecutive steps. Arabshahi et al. [Arabshahi et al., 1992] developed a simple
Fuzzy Logic controller to modify n as a function of the error and its derivative, considerably improving
Jacobs heuristics.

15.2 GAs controlled by FL

The use of Fuzzy Logic to translate and improve heuristic rules has also been applied to manage the resource
of GAs (population size, selection pressure) during their transition from exploration (global search in the
solution space) to exploitation (localized search in the discovered promising regions of that space [Cordon
et al., 1995; Herrera et al., 1995a; Lee and Tagaki, 1993]. In [Lee and Tagaki, 1993] the authors summarize
the results of Lee’s Ph.D. thesis [Lee, 1994] and propose a Fuzzy controller to perform a run-time tuning of
three GA parameters.

The controller takes the following three inputs to determine the current state of the GA evolution:

A It Worst F'it
verage Flitness orst Fitness — \ p o pi o

Best Fitness ' Average Fitness’

and produce three outputs
A Population Size, ACrossover Rate, AMutation Rate

that modify the GA parameters. These changes are constrained so that the previous values will not change
by more than 50%. Furthermore the three parameters (Population Size, Crossover Rate and Mutation Rate)
are limited to remain within the operational ranges [2, 160], [0.2, 1.0], and [0.0001, 1.0], respectively. Their
experimental results show large improvements of computational run-time efficiency at the expense of large
amounts of offline computation required to tune the Fuzzy Controller.

In general we can state that the management of GA resources gives the algorithm an adaptability that
improves its efficiency and converge speed. The crucial aspect of this approach is to find the correct balance
between the computational resurces allocated to the meta-reasoning (e.g. the fuzzy controller) and to
the object-level problem-solving (e.g. the GA). This additional investment of resources will pay off if the
controller 1s extendable to other object-level problem domains and if its run-time overhead is offset by the
run-time performance improvement of the algorithm.

According to reference [Herrera and Lozano, 1996], this adaptability can be used in the GA’s parameter
settings, genetic operators selection, genetic operators behavior, solution representation, and fitness function.

In the same reference we can see two examples of this adaptability used to avoid the premature conver-
gency of the GA to an inferior solution. This problem occurs when, due to selection pressure, disruption
caused by the crossover operators, and inadequate parameter settings, the GA exhibits a lack of diversity in
its population.

The first approach is based on dynamic crossover operators applied to real-coded chromosomes. These
operators use different type of aggregators: ¢-norms and {-conorms to emphasize exploration properties, and
averaging operators to show exploitation properties.

The second approach (in the same reference) uses two FL controllers to control the use of the exploitative
crossover and the selection pressure. For this purpose two diversity measures are defined: the genotypic
diversity, which measures the (normalized) average distance of the population from the best chromosome;
and the phenotypic diwersity, which measures the ratio between the best fitness and the average fitness. These
diversity measures are the inputs to the FLCs. Every five generations the FLCs evaluate these measures to
adjust the probability of using an exploitative crossover (based on averaging aggregators) and the selection
pressure (keeping or eliminating diversity in the next generation).

It should be noted that there are other ways of controlling the GAs parameters setting. Specifically, GAs
have also been applied at the meta-level to control the resource parameters of object-level GAs [Grefenstette,

1986].

15.3 FL Controller Tuned by GAs

Many researchers have explored the use of genetic algorithms to tune fuzzy logic controllers. Reference
[Cordon et al., 1995] alone contains an updated bibliography of over 300 papers combining GAs with fuzzy
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logic, of which at least half are specific to the tuning and design of fuzzy controllers by GAs. For brevity’s
sake we will limit this section to a few contributions. These methods differ mostly in the order or the selection
of the various FC components that are tuned (termsets, rules, scaling factors).

One of the precursors in this quest was C. Karr [Karr, 1991b; 1991a; 1993], who used GAs to modify
the membership functions in the termsets of the variables used by the FCs. Karr used a binary encoding
to represent three parameters defining a membership value in each termset. The binary chromosome was
the concatenation of all termsets. The fitness function was a quadratic error calculated for four randomly
chosen initial conditions.

Herrera, Lozano, and Verdegay [Herrera et al., 1995b] directly tuned each rule used by the FC. They used
a real encoding for a four-parameter characterization of a trapezoidal membership value in each termset.
Fach rule was represented by the concatenation of the membership values used in the rule antecedent (state
vector) and consequent (control action). The population was the concatenation of all rules so represented.
A customized (max-min arithmetical) crossover operator was also proposed. The fitness function was a sum
of quadratic errors.

Kinzel, Klawon and Kruse [Kinzel et al., 1994] tuned both rules and termsets. They departed from
the string representation and used a (cross-product) matrix to encode the rule set (as if it were in table
form). They also proposed customized (point-radius) crossover operators which were similar to the two-
point crossover for string encoding. They first initialized the rule base according to intuitive heuristics, used
GAs to generate better rule base, and finally tuned the membership functions of the best rule base. This
order of the tuning process is similar to that typically used by self-organizing controllers [Burkhardt and
Bonissone, 1992b).

Lee and Takagi also tuned the rule base and the termsets [Lee and Takagi, 1993]. They used a binary
encoding for each three-tuple characterizing a triangular membership distribution. Each chromosome rep-
resents a Takagi-Sugeno rule[Takagi and Sugeno, 1985], concatenating the membership distributions in the
rule antecedent with the polynomial coefficients of the consequent.

Also interesting is the approach taken by Surman, Kanstein, and Goser [Surmann et al., 1993], who
modify the usual quadratic fitness function by addition an entropy term describing the number of activated
rules.

In [Bonissone et al., 1996], we followed the tuning order suggested by Zheng [Zheng, 1992] for manual
tuning. We began with macroscopic effects; by tuning the FC state and control variable scaling factors, while
using a standard uniformly spread termset and a homogeneous rule base. After obtaining the best scaling
factors, we proceeded to tune the termsets, causing medium-size effects. Finally, if additional improvements
were needed, we tuned the rule base to achieve microscopic effects.

This parameter sensitivity order can be easily understood if we visualize a homogeneous rule base as a
rule table: a modified scaling factor affects the entire rule table; a modified term in a termset affects one
row, column, or diagonal in the table; a modified rule only affects one table cell.

15.4 NNs Generated by GAs

There are many forms in which GAs can be used to synthesize or tune NN: to evolve the network topology
(number of hidden layers, hidden nodes, and number of links) letting then Back-Propagation (BP) tune
the net; to find the optimal set of weights for a given topology, thus replacing BP; and to evolve the
reward function, making it adaptive. The GA chromosome needed to directly encode both NN topology and
parameters is usually too large to allow the GAs to perform an efficient global search. Therefore, the above
approaches are usually mutually exclusive, with a few exceptions [Maniezzo, 1994; Patel and Maniezzo, 1994]
that rely on variable granularity to represent the weights.

Montana and Davis were among the first to propose the use of GAs to train a feedforward NN with a
given topology [Montana and Davis, 1989).

Typically NNs using Back-Propagation (BP) converge faster than GAs due to their exploitation of local
knowledge. However this local search frequently causes the NNs to get stuck in a local minima. On the other
hand, GAs are slower, since they perform a global search. Thus GAs perform efficient coarse-granularity
search (finding the promising region where the global minimum is located) but they are very inefficient in
the fine-granularity search (finding the minimum). These characteristics motivated Kitano to propose an
interesting hybrid algorithm in which the GA would find a good parameter region which was then used to
initialize the NN. At that point, Back-Propagation would perform the final parameter tuning [Kitano, 1990)].
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Meclnerney and Dhawan improved Kitano’s algorithm by using the GA to escape from the local minima
found by the backpropagation during the training of the NNs (rather than initializing the NNs using the GAs
and then tuning it using BP). They also provided a dynamic adaptation of the NN learning rate [McInerney
and Dhawan, 1993].

For an extensive review of the use of GAs in NNs, the reader is encouraged to consult references [Schaffer

et al., 1992] and [Yao, 1992].

15.5 FL Controller Tuned by NNs

Among the first to propose the combined use of FL and NNs was S.C. Lee [Lee and Lee, 1974], who in
1974 proposed a multi-input/multi-output neuron model, in contrast with the binary-step output function
advocated in the mid seventies. Since then we have witnessed many FL-NNs combinations (see reference
[Takagi, July 1990] for a more exhaustive coverage).

Within the limited scope of using NNs to tune FL Controllers, we already mentioned the seminal work
on ANFIS (Adaptive Neural Fuzzy Inference Systems) by R. Jang [Jang, 1993]. ANFIS consists of a six
layers generalized network. The first and sixth layers correspond to the system inputs and outputs. The
second layer defines the fuzzy partitions (termsets) on the input space, while the third layer performs a
differentiable T-norm operation, such as the product or the soft-minimum. The fourth layer normalizes the
evaluation of the left-hand-side of each rule, so that their degrees of applicability A; (see equation 4) will add
up to one. The fifth layer computes the polynomial coefficients in the right-hand-side of each Takagi-Sugeno
rule (as described in equation 2). Jang’s approach is based on a two-stroke optimization process. During
the forward stroke the termsets of the second layer are kept equal to their previous iteration value while
the coefficients of the fifth layer are computed using a Least Mean Square method. At this point ANFIS
produces an output, which 1s compared with the one from the training set, to produce and error. The error
gradient information is then used in the backward stroke to modify the fuzzy partitions of the second layer.
This process is continued until convergence is reached.

Many other variations of FLC tuning by NN have been developed, such as the ones described in references
[Kawamura et al., March 1992], [Bersini et al., 1993], and [Bersini et al., 1995],

15.6 Hybrid GAs

Since GAs are quite robust with respect to being trapped in local minima (due to the global nature of
their search) but rather inaccurate and inefficient in finding the global minimum, several modifications have
been proposed to exploit their advantage and compensate for their shortcoming. Of special interest is the
work by Renders and Bersini, who proposed two type of hybrid GAs [Renders and Bersini, 1994]. The fist
type consists in interwoving GAs with Hill Climbing techniques (GA+HC): the solution selection no longer
depends on the instantaneous evaluation of the fitness function applied to the solution but rather applied
to a refinement of the solution obtained via Hill Climbing techniques. The second type of hybrid consists
in embedding optimization techniques in the crossover operator used by the GAs. The population size is
A(n + 1) individuals, of which only A individuals are replaced by offsprings. Each offspring is obtained from
a group of (n + 1) parents via a simplex crossover. His results show by combining the two hybrid methods,
(GA+HC) and (Simplex crossover) the resulting hybrid algorithm outperforms each of its components in
achieving maximum fitness, reliably, accurately, and minimizing computing time. An analysis of the tradeoff
between accuracy, reliability and computing time for hybrid GAs can be found in reference [Renders and

Flasse, 1996].

16 Hybrid Systems Applications
16.1 Example of FL Controller Tuned by GAs

We will briefly summarize the transportation problem described in [Bonissone et al., 1996] as a typical
example of a hybrid system application. In this case study we describe the design and tuning of a controller for
enforcing compliance with a prescribed velocity profile for a rail-based transportation system. This requires
following a trajectory, rather than fixed setpoints (as in automobiles). We synthesize a fuzzy controller for
tracking the velocity profile, while providing a smooth ride and staying within the prescribed speed limits.
We use a genetic algorithm to tune the fuzzy controller’s performance by adjusting its parameters (the scaling
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factors and the membership functions) in a sequential order of significance. We show that this approach
results in a controller that is superior to the manually designed one, and with only modest computational
effort. This makes it possible to customize automated tuning to a variety of different configurations of the
route, the terrain, the power configuration, and the cargo. In the rest of this section we will describe the
problem, our system’s architecture, the tuning of the FC, and some selected results. Finally, we will conclude
with an assessment of the current system and possible future extensions.

16.1.1 Problem Description

We propose a system, composed of a cruise planning and a cruise control module, that will automate the
controls of a freight train. This system will be applicable during most of the train journey, except for the
initial and final transients, i.e. the train starting and stopping. In this paper we will focus on using a GA to
improve the performance of the on-line controller.

A freight train consists of several hundred heavy masses connected by couplers. Each coupler may have
a dead zone and a hydraulically damped spring. This implies that the railcars can move relatively to each
other while in motion, leading to a train that can change length by as much as 50-100 feet. Handling of
the locomotive controls has a direct effect on these inter-car coupler dynamics and the forces and distances
therein (which are termed slack). Couplers are subjected to two types of forces which may lead to breakage
of the coupler, the brake pipe, and the train — static forces, which exceed a certain threshold, and dynamic
forces, such as impulse impacts, which may snap the coupler. In addition, violation of speed limits and
excess acceleration/breaking may also lead to derailments and severe cargo damage. Smooth handling
while following a speed target is therefore absolutely imperative. Usually this handling is provided by an
experienced train engineer.

Summary of Approach We will focus on the module responsible for on-line tracking of the externally
supplied speed profile to drive the train smoothly and without violating the speed constraints. The profile
is the reference provided according to railroad operating rules and requirements. The controller uses a fuzzy
logic PI to minimize tracking error, while providing a smooth ride and insuring that no part of the train® will
exceed the posted speed limit. The Fuzzy Proportional Integral (FPT) controller uses the tracking error and
its change-in-error to recommend a change in the control output. This is used to modify the current control
settings if feasible. The control outputs are the notch and brake settings (which control the acceleration of
the train). If allowed, the FPI will track the reference profile accurately.

The computation of the error used by the FPI incorporates a lookahead to properly account for the train
inertia. The algorithm predicts the future velocity of the train and incorporates not only the current error,
but also the future predicted error, since the future reference speed is known from the profile. Finally, the
PT is tuned (offline) using GA’s that modify the controllers most sensitive parameters: scaling factors (SF)
and membership distributions (MF).

This system has multiple purposes: providing a certain degree of train handling uniformity across all
crews, enforcing railroad safety rules (such as insuring that the posted speed limits are never exceeded by
any part of the train), maintaining the train schedule within small tolerances, operating the train in efficient
regimes, and maintaining a smooth ride by avoiding sudden accelerations or brake applications This last
constraint will minimize damage due to poor slack-handling, bunching, and run-in.

Prior Work: Problem Domain As described above, the handling of freight trains involves a multi-body
problem and proper slack management, without sensors for most of the state. This leads to a much more
complex problem, which cannot be solved by the simpler schemes used by the cruise controllers for other
vehicles, such as cars, trucks, boats etc.

Current locomotives are equipped with a very simplistic cruise control that uses a linear Proportional
Integral (PT) controller, which can be used only below speeds of 10 mph. This PI controller is primarily meant
to be used for uniform loading, yard movement etc. and does not prescribe braking action. Furthermore,
the technology used does not consider slack or distributed dynamics in any way, and is inappropriate for
extended trains at cruising speeds over general terrain. To test and tune our fuzzy controller, we have used
a simulator developed in-house, based on work done at GE and the Association of American Railroads.

31t is important to remember that the typical freight train can be as long as 2.0 miles and requires up to four locomotives
to pull it.
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16.1.2 Solution Description

System Avrchitecture The overall scheme for the proposed train handling is shown in Figure 22. It
consists of an FPI closing the loop around the train simulation (TSIM), using only the current velocity as
its state input. This speed and lookahead are compared with the desired profile to generate a predicted
near-term error as input to the FPI, which outputs control actions back to the simulator. Offline, a GA uses
the setup for evaluating various FPI parameters.

i GENESIS Optimal FPI i
i parameters !
! Fitness Desired |
i function velocity profile |
i offline |
i speed err i
i v Fuzzy PI |1
i TSIM ) notch/brake controller |1

Figure 22: System schematic for using a GA to tune a fuzzy train controller.

The simulator — TSIM, is an in-house implementation, combining internal data with physical /empirical
models as described in TEM (Train Energy Model) [Drish, 1992]. TEM was developed by the Association of
American Railroads. TSIM simulates an extended train with arbitrary detailed makeup, over a specified track
profile. The version of TSIM used here does not simulate a stretchable train for the sake of computational
efficiency.

For the purpose of this study, GENESIS (GENEtic Search Implementation System) has been adopted
as a software development tool. It has been developed by John J. Grefenstette to promote the study of
genetic algorithms for function optimization. The user must provide only a “fitness” function which returns
a corresponding value for any point in the search space.

Fitness Functions To study the effects of different objectives, we minimize three fitness functions :
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v? denotes the desired velocity and i is a distance or milepost index. f; captures throttle jockeying, fo
captures speed profile tracking accuracy, and fs combines a weighted sum of the two.

Tuning the Fuzzy PI

Testbed and Design Choices For comparison purposes, twelve tests have been conducted by taking
a cross-product of: the scaling factor values before and after GA tuning, the membership function parameter
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values before and after GA tuning, and the 3 fitness functions. The tests are designed to demonstrate that
GAs are powerful search methods and are very suitable for automated tuning of FPI controllers. GAs are
able to come up with near-optimal FPI controllers within a reasonable amount of time according to different
search criteria. In addition, the tests are also designed to demonstrate that we should tune parameters in
the order of their significance. That is, we should tune scaling factors first since they have global effects on
all the control rules in a rule base. Tuning membership functions will only give marginal improvements for
a FPI with tuned scaling factors. In the following, we present testbed set-up and design choices in brief.

e Train Simulator Parameters: All testing for the automated tuning of FPI was done using TSIM. Two
track profiles were used: an approximately 14 mile flat track and an approximately 40 mile piece of actual
track from Selkirk to Framingham over the Berkshires. The train was nearly 9000 tons, and about a mile
long, with 4 locomotives and 100 loaded railcars. An analytically computed velocity profile which minimizes
fuel consumption was used as the reference.

¢ FPI Controller Parameters: The standard termset used in the FPI is {NH, NM, NL, ZE, PL, PM,
PH}, where N = Negative, P = Positive, H = High, M = Medium, L. = Low, and ZE = Zero. Initially, these
seven terms are uniformly positioned trapezoids overlapping at a 50% level over the normalized universe of
discourse. This is illustrated in Figure 23.  Since the controller is defined by a nonlinear control surface in
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Figure 23: Fuzzy membership functions

(e, Ae, Au) space, we need three termsets in all, one for each of e, Ae,Au. The design leads to a symmetric
controller; which 1s not always a good assumption. In this case, the GA tuning will automatically create the
required asymmetry.

¢ GENESIS parameters: The GA parameters are : Population Size = 50, Crossover Rate = 0.6, Mutation
Rate = 0.001. In addition, all structures in each generation were evaluated, the elitist strategy was used to
guarantee monotone convergence, gray codes were used in the encodings, and selection was rank based.

e Tuning of Scaling Factors (SF): FEach chromosome is represented as a concatenation of three 3-bit
values for the three floating point values for the three FPI scaling factors S., S; and S,. They are in the
ranges: S, € [1,9],54 € [0.1,0.9], S, € [1000,9000]. The intent is to demonstrate a GA’s ability for function
optimization even with such a simple 9-bit chromosome.

e Tuning of Membership Functions (MF): Each MF is trapezoidal and parameterized by left base (L),
center base (C'), and right base (R), as illustrated in Figure 24.

If we did not have any constraints on the membership functions (MFs), we would need 21 parameters to
represent each termset. In our case we want to impose certain conditions on the MFs to enforce some good
design rules. Since each MF is trapezoidal and we want to maintain an overlap of degree equal to 0.5 between
adjacent trapezoids, this restriction partitions the universe of discourse into disjoint intervals, denoted by
b;, which alternate between being cores and the overlap areas of the MFs. Furthermore, the cores of NH
and PH extend semi-infinitely to the left and right respectively (outside the [-1,1] interval). We also want
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Figure 24: Membership function representation.

to maintain a symmetry between the core of NH and PH with respect to the mid point of the scale (0).
Finally, the sum of all the disjoint intervals should be equal to 2. The above constraints translate into the
following relations:

o Li=Ryyifori=1,...,6-[0.5 overlap]
e Ry = L7 =0 - [Extension outside the [-1,1] interval]

e (by = Cy) = (b3 = C7) - [Symmetry of extreme labels]

2-5 5 .
o (1 = % - [interval normalization]
Therefore, in this case we need eleven intervals, denoted by b;, to represent the seven 7 MF labels in each
termset. In general, under the above conditions, the number of required intervals | b | is:

b= (2x | MF | —3)

where | M F' | is the number of membership functions. Each termset is represented by a vector of 11 floating
point values. For the present study, each b; is set within the range of [0.09,0.18] and the values within this
range are represented by five bits. The chromosome required to tune the membership functions is constructed
by catenating the representations of the three termsets, for a total of 33 real-valued parameters.

16.1.3 Simulation Results

The discussion of the results is divided into four parts. First, we compared the simulation results between
FPI with manually tuned scaling factors and that of tuned by GAs with respect to different fitness functions.
These tests were corresponding to Row 1 and 2 in Table 3. Then, we compared the simulation results of
different combinations of scaling factors and membership functions with respect to f;. These tests were
corresponding to Column 1 in Table 3. After that, we presented the simulation results obtained from the
tests of Column 3 in Table 3. In other words, we compared the effects between tuning scaling factors and
membership functions for a FPI controller with respect to fs. We concluded this section with a summary of
the simulation results.

Scaling factors Time (min) Journey (mile) Fuel (gal) Fitness

Tnitial [5.0,0.2,5000] 2651 14.26 878 [i=732, fa=227,fs=1
GA wrt. f1 [9.0,0.1,1000] 27.76 14.21 857 73.2 — 15.2

GA wrt. f5 [6.7,0.1,4429] 25.81 14.12 875 227 — 213.1

GA wrt. f5[3.3,0.9,5571] 27.26 14.27 875 1.0 — 0.82

Table 3: Results after 4 generations with different fitness functions.
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SF : Manually Tuned vs. GA The GA was started with an initial set of scaling factor values, and run
with each of the fitness functions fi, fo, f3 for the flat track and unit train. The results after four generations
are shown in Table 3.

Throttle jockeying is almost eliminated in f; by decreasing both K, and K; simultaneously. There are
no big differences in fuel consumption between the four runs. These results will show further improvement
when a more dynamic fuel consumption model which models transients i1s incorporated into the simulator.

Tuning SF vs. MF with f; Four sets of tests were conducted for the comparison of significance in tuning
scaling factors (SF) vs. tuning membership functions (MF) with respect to fitness function f;. The results
are shown in Table 4. The initial set of scaling factors is [S.S¢5,] = [6.0,0.2,5000]. After 4 generations of
evolution, the set of GA tuned SF is [9.0,0.1,1000]. As shown in Table 4, the fitness value was dramatically
reduced from 73.20 to 15.15 for the GA tuned SF with respect to f1. Substantially smoother control results.

Description Time Journey Fuel Fitness Generation
Initial SF, initial MF 26.51 14.26 878 73.20 0
GA tuned SF, initial MF 27.76 14.21 857 15.15 4
Initial SF, GA tuned MF 26.00 14.18 879 70.93 20
GA tuned SF, GA tuned MF  28.26 14.12 829 14.64 10

Table 4: Results using f; with different parameter sets.

On the other hand, GA tuned MF only reduced throttle jockeying a little bit after 20 generations of
evolution. It is indicated by the the small reduction in fitness value from 73.20 to 70.93. From the above
observations, we can conclude that tuning SF is more cost-effective than tuning MF. The little improvement
by tuning MF’s leads to an asymmetric shift in the membership functions, such that the ones on the left of
ZF get shifted more than the ones on the right. This 1s due to the slightly asymmetric calibration of the
notch and brake actuators. A +5 (notch) may not lead to the exact tractive force forward that a -5 (brake)
leads to in the opposite direction. As a result, the best FPI responds to negative error slightly differently
than to positive error.

Next, we demonstrate that tuning membership functions only gives marginal improvements for a fuzzy PI
controller with tuned scaling factors. we used GA to optimize FPI’s MF with respect to fi, while using the
GA tuned SF values of [9.0,0.1, 1000]. After 10 generations of evolution, the fitness value was further reduced
from 15.15 to 14.64. The change in smoothness and the MF values is minimal. After observing the simulation
results, we conclude that tuning membership functions alone will only provide marginal improvements for a
fuzzy PI controller with fine tuned scaling factors.

Tuning SF vs. MF with f3 We further verified our arguments stated in the last sub-section with the
following four sets of tests conducted with respect to fitness function fs, which balances both tracking error
and control smoothness. The results are shown in Table 5.

Description Time Journey Fuel Fitness Generation
Initial SF w/initial MF 26.51 14.26 878 1.000 0
GA tuned SF w/initial MF 27.21 14.35 871 0.817 4
Initial SF w/GA tuned MF 26.26 14.18 871 0.942 20
GA tuned SF w/GA tuned MF  27.26 14.35 872 0817 10

Table 5: Results using f3 with different parameter sets.

Recall that the initial set of scaling factors is [5.0,0.2,5000]. After 4 generations of evolution, the GA
came up with a set of SF =[3.3,0.9,5571], with respect to f3. As shown in Table 5, the fitness value was
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reduced from 1.000 to 0.817 while doing this. On the other hand, GA tuned MF only reduced the fitness
value from 1.000 to 0.942 after 20 generations of evolution, confirming the claim that tuning SF is more
cost-effective than tuning MF.

We proceeded to experiment with MF tuning with tuned SF = [3.3,0.9,5571]. This time there were no
significant improvements in fitness after 10 generations.

Description f fa f3

Initial SF w/initial MF 73.2 227 1.00
GA tuned SF w/initial MF 152 213 0.82
Initial SF w/GA tuned MF 70.9 201 0.94

GA tuned SF w/GA tuned MF 14.6 204 0.82

Table 6: Summary of all simulation results on the flat track.

Table 6 summarizes all the 12 tests run on the flat track. In addition, we present the final performance
graphs in Figure 25 for the more complex piece of real track with the same train. It shows substantial
improvement in control accuracy and smoothness.

16.1.4 Application Conclusions

We have presented an approach for tuning a fuzzy KB for a complex, real-world application. In particular, we
used genetic algorithms to tune scaling factors as well as membership functions, and demonstrated that the
approach was able to find good solutions within a reasonable amount of time under different train handling
criteria. In addition, we showed that all parameters do not need to be treated as equally important, and that
sequential optimization can greatly reduce computational effort by doing scaling factors first. Additional
improvement was shown by the good performance of fairly coarse encodings. The scalability of the approach
enables us to customize the controller differently for each track profile, though it does not need to be changed
for different train makeups. In this way, we can produce customized controllers offline efficiently. Future
extensions of this system will focus on automatic generation of velocity profiles for the train simulator by
using genetic algorithms for trajectory optimization subject to “soft” constraints.
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Figure 25: The two figures on the left show reference tracking performance and control outputs before GA
tuning. After tuning, the two figures on the right show vastly improved tracking and smoothness of control.
The track was a section of Selkirk—Framingham track, and the simulated train was the 9000 ton, mile-long,

loaded unit train.
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16.2 Example of NN Controlled by a FLC

This example illustrates the use of a FLC to accelerate the performance of a neural network. The original
problem in which it was used was the failure prediction and failure diagnostics of a complex industrial process.
The details of the problem domain are still considered confidential and cannot be divulged. However, we
can certainly describe the portion concerning the acceleration of the NN-based classifier.

16.2.1 Neural Learning with Fuzzy Accelerators

The training method employed for neural nets in our approach is error back-propagation, which is a gener-
alization of the Least Mean Squares (LMS) algorithm. This is essentially a gradient descent method over
weight space, which seeks to minimize the mean squared error over the entire training set. Since gradient
descent can be very slow, we need an acceleration technique to speed up neural learning. This is done using
fuzzy rules.

As mentioned before, in section 15.1, the basic weight update equation in backpropagation is as follows:

W) = W5 )~ gy + o (W50~ W57 0]

where W;;({) is the weight between the ith neuron at the /th layer and the jth neuron at the ({— 1)th layer,
FE is the sum of squared error between target and actual output, s is the iteration step, 7 1s the learning rate
(usually between 0.01 and 1.0), and « is the momentum coefficient (usually 0.9).

The learning rate 7 determines how fast the algorithm will move along the error surface, following its
gradient. The momentum represents the fraction of the previous changes to the weight vector AW,,_; which
will stil be used to compute the current change. As implied by its name, the momentum tends to maintain
the changes moving along the same direction.

From the above equation, it is clear that the efficiency of weight updating depends on the selection of
the learning rate as well as the momentum coefficient. The selection of these parameters involves a tradeoff:
in general, large n and « result in fast error convergence, but poor accuracy. On the contrary, small n and
a lead to better accuracy but slow training [Wasserman, 1989].

Unfortunately, the selections are mainly ad hoc, i.e., based on empirical results or trial and error. In
addition, the choice of activation function, f(z) could also influence the learning process:

1

0=

where [ is the steepness parameter of the activation function.

The Fuzzy Accelerator used in our application is similar to that described in [Kuo et al., 1993], since 7,
a, and B are tuned simultaneously. However, the main difference is that we use both total error andtotal
training time as fuzzy premise variables for adjusting £ instead of using only total error. It is believed that
total training time will provide the annealing effect which yields precise convergence [Rumelhart et al., 1986].
Fuzzy rules for adjusting of  and « are listed in Table 7, while fuzzy rules for g are shown is Table 8.

The universe of discourse of total training error is partitioned into Smeall, Medium, and Big, while the
universe of discourse of change of error between two consecutive iterations is partitioned into Negative, Zero,
and Positive. There are only nine fuzzy rules for adjustment of both the learning rate and the momentum
coefficient. The point is that the training time will be reduced significantly even with such simple fuzzy
rules. The obtained simulation results demonstrate the validity of the above argument.

Change of Error Training Error
Small Medium Buiyg
Negative Very small increase  Very small increase  Small increase
Zero No change No change Small increase
Positive Small decrease medium decrease  Large decrease

Table 7: Fuzzy rule table for Ay and Ac.
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In Table 8, the partitioning of total training error is the same as in Table 7, while the universe of
discourse of total training time is partitioned into Short, Medium, and Long. Again, there are nine rules
for adjustment of the steepness parameter of the activation function. For instance, the fuzzy rule in row 3
column 1 is interpreted as:

IF erroris Small AND time for training is long
THEN steepness parameter should be Large

Training Time Training Error
Small Medium Buiyg
Short Medium Small Small
Medium Large Medium Small
Long Large Large Medium

Table 8: Fuzzy rule table for 3.
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17 PART III Conclusions: Soft Computing

We should note that Soft Computing technologies are relatively young: Neural Networks originated in 1959,
Fuzzy Logic in 1965, Genetic Algorithms in 1975, and probabilistic reasoning (beside the original Bayes’ rule)
started in 1967 with Dempster’s and the in early 80s with Pearl’s work. Originally, each algorithm had well-
defined labels and could usually be identified with specific scientific communities, e.g. fuzzy, probabilistic,
neural, or genetic. Lately, as we improved our understanding of these algorithms’ strengths and weaknesses,
we began to leverage their best features and developed hybrid algorithms. Their compound labels indicate
a new trend of co-existence and integration that reflects the current high degree of interaction among these
scientific communities. These interactions have given birth to Soft Computing, a new field that combines
the versatility of Fuzzy Logic to represent qualitative knowledge, with the data-driven efficiency of Neural
Networks to provide fine-tuned adjustments via local search, with the ability of Genetic Algorithms to
perform efficient coarse-granule global search. The result is the development of hybrid algorithms that are
superior to each of their underlying SC components and that provide us with the better real-world problem
solving tools.
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