
Introduction to Matlab
Graeme Chandler
Mathematics Department

The University of Queensland

February 2000

1 Introduction. 2
1.1 Learning Matlab . 2
1.2 Further References . 2
1.3 Starting Matlab . 2
1.4 Typing Commands . 3

2 Simple Calculations 3
2.1 Basic Arithmetic. 3
2.2 Complex Numbers. 4

3 Help in Matlab 4
3.1 The Help Command . 4
3.2 The Help Window . 5
3.3 The Help Desk . 5

4 Simple Plots of Functions 6
4.1 2D Plots . 6
4.2 3D Plots. 7

5 Plotting Lines and Data 8
5.1 Adding a Line . 8
5.2 Hints for Good Graphs . 9

Plot data as points . 9
Choose a good scale . 9

6 Matrices and Vectors 10
6.1 Solving Equations. 10
6.2 Matrices and Vectors. 11
6.3 Creating Matrices . 11
6.4 Systems of Equations . 12
6.5 Polynomials . 13

7 Graphs 13
7.1 Component Arithmetic . 14
7.2 Printing Graphs . 14
7.3 Graphs in Reports . 15
7.4 Saving Graphs . 15
7.5 Advanced Graphics . 15

8 3D Graphics 15
8.1 3D Basics . 15
8.2 Advanced Options . 16

9 Functions 16
9.1 Writing a Function . 16
9.2 Notes on Functions . 17

Code is private . 17
Use . operators . 17
Other editors . 17

10 Using Functions 18
10.1 1D Minimization. 18

Accuracy . 18
10.2 Finding Zeros . 19
10.3 Integration. 19

Accuracy . 20

11 Differential Equations. 20
11.1 Scalar ODE’s . 20
11.2 Order 2 ODE’s . 22

12 A Small Assignment 22
12.1 Model Answer . 23

13 Larger Projects 23
13.1 M-Files. 24
13.2 Some Programming . 24
13.3 More Programming . 25
13.4 Saving to Floppies. 25

14 Command Summary 26

1

1. Introduction.

1.1 Learning Matlab

Matlab is one of the fastest and most enjoyable ways to solve problems numerically.
The computational problems arising in most undergraduate courses can be solved much
more quickly with Matlab, than with the standard programming languages (Fortran, C,
Java, etc.). It is particularly easy to generate some results, draw graphs to look at the
interesting features, and then explore the problem further. By minimizing human time,
Matlab is particularly useful in the initial investigation of real problems; even though
they may eventually have to be solved using more computationally efficient ways on
super computers.

This introduction gives a quick way to become familiar with the most important
parts of Matlab. The first five sections emphasize simple arithmetic, matrix-vector op-
erations (including solving systems of equations), and graphing functions and data. The
later sections describe some more advanced features, including 3D graphics. There are
also some suggestions about using Matlab to do larger projects, and including Matlab
results and graphs in reports.

The best way to used this introduction is to sit down at a computer and type in the
commands as they are described. Look atMatlab’s response, and check that the answers
are what you expect. It is also a good idea to do the small exercises. It makes sure that
the commands become part of an active Matlab vocabulary. Each lesson should take
less than one hour. More information about any Matlab command can be found by
using the on line help features described in lesson 3.

These notes assume basic familiarity with the Windows interface.. For instance,
you need to know about

cutting and pasting within and between windows,
editing files, and
moving between windows and resizing them.

If you are unsure about this, seek help from another student or tutor.

1.2 Further References

The complete Matlab Manuals are available on line in the Mathematics department’s
PC laboratories. They contain an introductory guide for new users, and an especially
good introduction to Matlab’s graphics.

More information on Matlab can be found in the books

1. D.M. Etter; Engineering Problem Solving with Matlab, Prentice–Hall, 1993.
2. Duane C. Hanselman & Bruce Littlefield; Mastering MATLAB 5: A Comprehen-

sive Tutorial and Reference, Prentice Hall, 1998
3. Kermit Sigmon, A Matlab Primer, 4th Ed. 1995

or try the Mathworks web site
http://www.mathworks.com

If you wish to use Matlab at home, the student edition of Matlab is available from
bookshops at the cost of about $100.00 (or you can borrow a copy from the library.)
The student version is ‘crippled’ and only works for small problems. Nevertheless, it
should suffice for almost all assignments in undergraduate courses. It is usually possible
to develop a program on the student version and do the final full size problem on the
Mathematics Department’s computers if necessary.

1.3 Starting Matlab

Here we describe the steps needed to start Matlab on the PC’s in the Mathematics Com-
puter Laboratories (Rooms 519 and 420). On other machines the start-up procedure
will be different. However the Matlab commands are the same on all machines.

1. First sit down at a PC. If necessary, close any programs left running by a previous
user. The simplest way is to use theWindows ‘Start’ button then the ‘Shut Down’
option.

2. When prompted, use the [Ctrl]-[Alt]-[Del] combination to bring up the logon
screen. (You will be asked for a name and password, but ignore this and just
press the [Enter] key.)

3. You should now see the standard Windows desktop with a screen of icons.
4. Find the icon labelled ‘Matlab’ and double click on it. After another pause, the
Matlab logo appears briefly, then the ‘MATLAB CommandWindow’ remains on

2

the screen. It ends with the words:-

To get started, type one of these commands:
helpwin, helpdesk, or demo.

For information on all of the MathWorks products, type tour.

>>

Matlab is now ready!

1.4 Typing Commands

All commands to Matlab are typed in after the Matlab prompt, i.e. the symbol .
They are then sent to Matlab to be implemented by pressing the [Enter] key.

Any typing error can be corrected before the [Enter] key is pressed.
– Use the keypad left and right arrows or the mouse to move to the error.
– Use the [Del] key to delete the mistakes, and then type in the correction.
– When the line is correct, just press [Enter] to send the command to Matlab.
(It is not necessary to go to the end of the line.)

Usually errors are not noticed until Matlab beeps and displays an error message.
However it is not necessary to retype the whole command.

Previous commands can be corrected and reused to save typing.
– Just press the keypad up arrow and the previous command appears.
– Make the necessary corrections and press [Enter] to run the corrected com-
mand.

Now go on to the first lesson. Type in all the commands as they are shown, and
make sure the Matlab response is what you expect.

Exercise 1 Type in the Matlab command logo . A nice 3D graph of the Matlab
logo should appear. This is produced by advanced use ofMatlab’s graphics capabilities,
discussed later.

2. Simple Calculations

2.1 Basic Arithmetic.

The simplest way to start with Matlab is to use it for simple calculations. Matlab has a
wide range of functions and is able to use complex numbers as well as reals. The fol-
lowing simple commands have obvious meanings. Type them in and see what happens.
(In the examples below, all the text after the % is just a comment or an explanation.
You do not have to type it in. It would just be ignored by Matlab.)

% The words after ‘%’ are comments
% and explanations. Do not type them in.

(-1+2+3)*5 - 2/3 % The four arithmetic operations
2^3 % Means 2 to the power 3
exp(sin(pi/2)) % The usual functions are provided

% log, log10, cos, tan, asin, ...

Like a calculator, Matlab does all calculations correct only to about 16 significant
decimal digits. This is enough accuracy for most purposes. For convenience, usually
only the first 5 significant digits are displayed on the screen. Some more examples.

pi
22/7 % pi is not the same as 22/7!
11*(15/11) - 15 % This shows there is roundoff error

% when Matlab uses fractions.
cos(pi/3) % These are familiar trig functions.
sin(pi/6) % Note Matlab always uses radians.

Matlab also uses variables to store intermediate answers. A variable can have
almost any name, but it must begin with a letter. Matlab distinguishes between upper
and lower case letters.

x = 2+3
y = 4+5
result1 = x/y

Sometimes the values of intermediate calculations are not needed and we do not
want them to be displayed. If a semicolon (;) is placed after a command, the results
are not displayed.

3

p = 2+3 ; % The semicolons supress
q = 3+5 ; % unwanted output.
ratio = p/q

A number of commands can be placed on the one line, provided they are separated
by a comma (,) or a semicolon (;). (Use a semicolon, unless you want the answer
displayed.)

p = 2+3 ; q2 = x + 4 , ratio2 = p/q2 % All on one line

Parentheses can be used to make expressions clearer. Thus the last calculation could
have been written as

ratio = (2+3)/(x+4)

Exercise 2 In this exercise, save retyping by using the up arrow to edit the previous
commands! Remember that multiplication is done with a ‘ ’, it is not enough to put
numbers next to each other.

1. Use Matlab to evaluate where .
2. Now use Matlab to evaluate where .
3. Finally, evaluate when .

2.2 Complex Numbers.

Matlab handles complex numbers as easily as real numbers. When you start Matlab the
variable stands for

x = 2 + 3*i , y = 1 - 1*i
z1 = x - y , z2 = x * y , z3 = x / y
abs(x)
angle(y)

% Matlab quickly calculates the
sin(x) % sin of a complex number.

Matlab’s facilitywith complex numbers is handy, as using complex numbers often
involves complicated arithmetic. Indeed, as the previous example shows, Matlab will
effortlessly work out functions of complex numbers that are difficult to do from first
principles. But be careful about the name used for . When Matlab starts, the
variable i contains . Often the user overrides this and uses i to stand for

another number (in coding for example). In this case the Matlab command i =
(-1)^.5 should be used to reset i to before it is used to represent complex
numbers.

i = 2 ; j = 3 ; i+j % i is used in another calculation.
z = 2 + 3*i % Complex arithmetic no langer works!.
i = (-1)^.5 % reset i
z = 2 + 3*i % Complex numbers can now be used.

Here are two more complex calculations. Matlab can be used to demonstrate one
of the most important relations in Mathematics: that . (At least to within
round off error!).

exp(pi*i) + 1
i^i

Exercise 3

(a.) The last command showed that according to Matlab, is a real number.
Can you explain mathematically why this is this so? (Hint: Use)

(b.) If = , what are and ? Can you work this out without Matlab?

3. Help in Matlab
There are three ways to get help in Matlab.

3.1 The Help Command

This is the easiest way to find out more about specific Matlab commands. If you have
forgotten small details, for example. The command help name gives information
about the Matlab command name .

help sin % Information about sin.
help i % Information about i .
help log % This is enough information about log

% to show log means log to the base e .

4

why % Provides general answers.

By itself, the command help gives a list of topics in Matlab. Initially, many
of the topics will be mysterious. The most familiar topic from the list is probably ‘el-
ementary functions’. To explore this topic use the command help elfun. In the
most recent versions of Matlab the lookfor command can also be used to search for
relevant information.

help % Gives a list topics.
help elfun % More help in the area ‘elfun’, i.e.

% elementary functions like sin, exp,..
help sign % Information about a new command

% from the list in ’elfun’
lookfor logarithm % Gives the name of some

% functions related to logarithms
lookfor legend % Finds former students

The lookfor command is quite useful; however it may be very slow in the Mathe-
matics PC lab. This is due to the heavy network traffic. But lookfor should be quite
fast on a single user PC.

3.2 The Help Window

It is also possible to get help by clicking on the ‘Help’ menu above the command win-
dow. From the ‘Help’ menu, select the ‘HelpWindow’ item (by clicking) and the list of
help topics is displayed. The advantage of this method is that it is possible to navigate
around various topics by double clicking on them. For example, in the help window
double click on elfun to find the same information given by the help elfun com-
mand. This is a good way to explore Matlab’s commands.

3.3 The Help Desk

Matlab also comes with help documentation that can be read by Web browsers. This
may be used by

– typing the command helpdesk in the command window; or
– using the ‘ ’ menu and selecting the item ‘ ’.

After a slight pause the initial documentationwindow should come up. Interesting links

to pursue are:-

Getting Started in Matlab for introductory information
Documentation Road Mapfor the complete set of manuals online, and
the ‘search’ box to look for more commands.

Exercise 4

1. Is the inverse sine function one of Matlab’s elementary functions? (The inverse
sine is also known as sin , arcsin, or asin.)
(a) How do you find in Matlab? Use help to find out.
(b) If is exactly zero in Matlab?
(c) If , is exactly zeros in Matlab? What about

?

2. Does Matlab have a specialized Mathematical function to calculate the greatest
common divisor? (Use help or lookfor)
(a) Use Matlab to find the greatest common divisor of 30 and 24. (Check the

answer the same as the answer calculated manually.)
(b) What is the greatest common divisor of 3072 and 288?

3. Does Matlab have a function to convert numbers to base 16, i.e. to hexadeci-
mal form? (Hint: Use lookfor to find a way to convert a decimal number to
hexadecimal.) What is 61453 in base 16? Computers almost always represent
numbers internally as hexadecimals.

4. Use the search box in the Help Desk and look for information about logarithms.
There are 9 entries, including the last command, logm, for calculating the log of
a matrix !

To wind down, type the Matlab command . This brings a menu of demon-
strations and examples to explore.

1. Visit the Gallery to see a number of attractive images.
2. Visit the Games section. Some find the game bubble wrap to be extraordinarily
relaxing.

5

4. Simple Plots of Functions
The ezplot commands (ezplot, ezsurf, ezmesh, ...) and fplot allow the user to
plot functions in 2 and 3 dimensions by simply typing in the formula. Matlab allows the
user much more control over colour, style, lighting, and surface texture. These more
complicated commands are introduced later.

4.1 2D Plots

The ez commands are best shown by example. Suppose we wish to plot the function
. This may be done simply using

ezplot(’sin(x)/(1+x.^2)’)

If we want to change the range to , add a second argument to our command.

ezplot(’sin(x)/(1+x.^2)’, [0,5])

Occasionally a function is given implicitly. For example, the circle of radius is
defined by the equation . This is plotted by

ezplot(’x^2+y^2-4’)

A better graph is produced when the range is restricted to
that is with the command

ezplot(’x^2+y^2-4’, [-2.5,2.5],[-2.5,2.5])

Alternatively we may remember the of radius 2 circle is defined parametrically
as the set of points Using this form the circle is
plotted as

ezplot(’2*cos(t)’, ’2*sin(t)’)

Exercise 5 1. A nice example of a function that would be difficult to graph without
a computer or calculator is

Plot . (Hint:- By itself, ezplot uses the range . This is
inappropriate here: a better choice is to try the range .)

2. A Lissajous curve is a curve of the form
(1)

Play with small integer values of and then find values of and so
the Lissajous curve becomes the ABC symbol.

3. And finally graph the implicitly defined function

The web site
http://mathworld.wolfram.com/topics/GeneralPlaneCurves.html

has a rich collection of interesting curves to draw.

Many interesting curves are expressed simply in polar coordinates, with the radius
given as a simple function of the angle. That is the curve is obtained parametrically as
the set of points

for some simple function . For example, the cochleoid (meaning ‘snail like’) uses
the formula . The resulting curve is plotted in Matlab as

ezpolar(’sin(t)/t’), [-6*pi,6*pi])

Of course we could get the same curve by writing out the and coordinates explicitly.
The cochleoid could have been graphed by

ezplot(’(sin(t)/t)*cos(t)’,’(sin(t)/t)*sin(t)’,[-6*pi,6*pi])

The command fplot can also plot functions quickly. For example

fplot(’sin’,[0,pi]) % Plot sin(x) on [0,pi]
fplot(’x-x^3/6’,[0,2]) % Plot a polynomial.

Although parametric curves or polar coordinates may not be used, fplot has the ad-
vantage that two or more functions may appear on the same plot

fplot(’[cos(x), 1-x^2/2, 1-x^2/2+x^4/24]’, [-pi,pi])

Exercise 6 1. From the help for the fplot command, find out how to change the
range of the y axis on the previous plot. For example, a range of
looks better.

2. Use fplot to do the following.
(a) Plot the function between -1 and 1.
(b) On the same graph plot and the polynomial between -1 and 1.
(c) Finally on the same graph plot , , and between

-1 and 1. Why are these last two polynomials good approximations to ?

6

Now add a title to the graph. Finally find out how to use the command legend
to label the three curves.

4.2 3D Plots.

Curves may exist three dimensions as well as two. If we fly around in a circle of radius
1 and gain 1 unit of height each circuit we would trace out the curve

To show the flight path up to the height , use the command

ezplot3(’cos(2*pi*t)’,’sin(2*pi*t)’,’t’,[0,4])

Exercise 7 1. Use help ezplot3 to findout how to animate this curve.
2. What is the angle the flight path makes with the horizontal? (This is a thinking
question; there is no simple Matlab command to help!)

3. How would we plot the path if we gained 2 units of height for each circuit?

Plotting surfaces in 3 dimensions is more interesting. To plot the surface
where

use the Matlab command

ezsurf(’x*y*exp(-(x^2+y^2))’)

Some folk prefer to do away with the ugly black lines on the surface. It is also useful
to add a color bar, so that it is possible to determine the height of the surface from
its colour. To make these modifications, add two extra commands after the ezsurf
command.

ezsurf(’x*y*exp(-(x^2+y^2))’) % Plot the surface
shading interp % Remove the black lines
colorbar % Add a colorbar

To see a 3D surface clearly it is necessary to look at it from different angles. Otherwise
key features may be hidden. We can change our viewpoint by clicking on the surface
with the mouse (a blue outline of a box should appear). Then, without releasing the
mouse button, drag the blue outline until the required view has been obtained. Release
themouse button and the surface will be redrawn from the new view. Bewarned though,
it is easy to get lost.

Exercise 8 Plot the function using the following commands in-
stead of easysurf.

ezsurfc ezmesh ezmeshc ezcontour ezcontourf

(The syntax of these new commands is the same as ezsurf. But a complete descrip-
tion of the new commands is found using help commands; help ezcontour, help
ezmeshc, ...). Which command and which viewpoint would be best to determine the
height of the peaks?

Exercise 9 (For students of multivariate calculus only.) Produce a nice graph which
demonstrates as clearly as possible the behaviour of the function

near the point . This is surprisingly difficult. Remember, by default,
Matlab plots surfaces on a 60 grid, and many of the finer features of a function are
lost. If your computer has enough memory it is possible to increase the number of grid
points for a smoother graph.

Remember a one dimensional curve in 2Dmay be described parametrically in the
form ; that is its two coordinates are a function of the one variable
. Surfaces may also be described parametrically in the form

The three coordinates are functions of 2 variables. For example a spiral ramp is de-
scribed by

This is graphed by

ezsurf(’s*cos(t)’, ’s*sin(t)’, ’t’,[.4,1],[0,6*pi])

Exercise 10 Use the floor command to plot a spiral staircase

ezsurf(’s*cos(t)’,’s*sin(t)’,’floor(t)’,[.4,1],[0,6*pi])

Exercise 11 Explain how the Lissajous curve in the previous section, is related to the
curve (Hint: Look at the 3D curve from different
angles.)

Exercise 12 Use the help surf command and look at the very last example. (It is
spread over two lines). Cut and paste these two lines from the help text to the current

7

command line (i.e. after the last) . Now press return and look at the graph. (You
could of course type in the whole command; but a cut and paste is more reliable.)

This formula is very complicated to understand; but the graph is interesting as
a work of Matlab art. You may need to rotate a little to see what is happening at the
origin. I prefer to use the more aesthetic variation. (Note the ... mean the command
is continued on the next line. The ... would be left out if the command we typed on
one long line.)

ezsurf(’(1-s)*(3+cos(t))*cos(4*pi*s)’, ...
’(1-s)*(3+cos(t))*sin(4*pi*s)’, ...

’3*s + (1 - s)*sin(t)’, ...
[0,2*pi/3,0,12],120),

shading interp

Exercise 13 Plot a sphere. (Hint: Use a parametric 3D plot. At height the sphere is
a circle of radius ... ?)

Exercise 14 Plot a swirl. This is a surface whose height above the point
is .

5. Plotting Lines and Data
This section shows how to produce simple plots of lines and data.

Suppose we wish to plot some points. For example we are given the following
table of experimental results.

.5 .7 .9 1.3 1.7 1.8

.1 .2 .75 1.5 2.1 2.4

To work with the data in Matlab set up two column vectors x and y.

x = [.5 .7 .9 1.3 1.7 1.8]’
y = [.1 .2 .75 1.5 2.1 2.4]’

(Vectors are discussed in detail in the next lesson; but we can use them to draw graphs
without knowing all the details.) To graph against use the plot command.

plot(x,y,’x’)

The graph should now appear. (If not, it may be hidden behind other windows. Click
on the icon ‘Figure No. 1’ on the Windows task bar to bring the graph to the front.)

This graph marks the points with an ‘x’. Other types of points can be used by
changing the ‘x’ in the plot command. (Use help plot to find out the details.)
From the graph it is clear that the data is approximately linear, whereas this is not so
obvious just from the numbers. Good graphs quickly show what is going on!

When you have finished looking at the graph, just click on any visible part of the
command window, or on the Matlab icon on the task bar. More commands can then be
typed in.

Exercise 15 1. Plot the above data with the points shown as circles.
2. Plot the above data with the points joined by lines (use help plot).
3. Plot the points as green stars.
4. Find out how to add a title to the plot. (Hint: Use the command help plot.
At the end of the help output there is a list of related commands. Find out about
one of these with another use of the help command.)

5.1 Adding a Line

From the graph it is clear that the points almost lie on a straight line. Perhaps the points
are off the line because of experimental errors. A course in statistics will show how to
calculate a ‘line of best fit’ for the data. But even without statistics, the line between
the points and is a good candidate for ‘a line fitting the data’. Lets add this
line to the plot and see how well it approximates the data. We do this by asking Matlab
to plot the points and joined by a line.

x_vals = [.5 2]’ % The X-coords of the endpoints.
y_vals = [0 3]’ % The Y-coordinates
plot(x,y,’x’, x_vals,y_vals,’-’)
legend(’Original Data’, ’Line of Best Fit’)
title(’Data Analysis (Graph by Effigy Mounds)’)

Note that x_vals contains the x–coordinates, y_vals contains the y–coordinates,
and the two points are joined by a line because the final argument in the plot command
is ’-’.

8

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
The data is hard to find on this graph

 Uses the command plot(x,y).
0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
 Marking individual points improves the graph

What was the command?

Figure 1: Good and Bad Data Plots

5.2 Hints for Good Graphs

There are many opinions on what makes a good graph. From the scientific viewpoint
a simple test is to see whether we can recover the original data easily from the graph.
A graph is supposed to add something, not remove information. For example if our
data runs from 1 to 1.5 it is a bad idea to use an axis running from 0 to 10, as we
will not be able to see the differences between the values. We give two more subtle
recommendations..

Plot data as points

Often people use the very simplest command to plot data and automatically type
just

plot(x, y) % The simplest plot command

This simple command does not present the data here very well. It is hard to see how
many points were in the original data. It is really better to plot just the points, as the lines
between points have no significance; they just help us follow the set of measurements
if there are several data sets on the one graph. If we insist on joining the points it is
important to mark the individual points as well

Exercise 16 Change the above plot command to show the data more clearly by plot-
ting the data points as small circles joined by dotted lines. (Hint: There should be a
third argument in the plot command containing the symbols for a line of dots and the
marker type circles; and perhaps a color symbol as well!)

Choose a good scale

In the example in this section, it was easy to see the relationship between and
from the simple plot of against . In more complicated situations, it may be necessary
to use different scales to show the data more clearly. Consider the following model
results

3 5 9 17 33 65
.257 .0646 .0151 3.96 9.78 2.45 .

A plot of against directly shows no obvious pattern. (Note the dots, ‘...’, in the
next example mean the current line continues on the next line. Do not type these dots
if you want to put the whole command on the one line.

n = [3 5 9 17 33 65]’;
s = [2.57e-1 6.46e-2 1.51e-2 ...

3.96e-3 9.78e-4 2.45e-4]’ ;

plot(n, s, ’x’) % This is a poor plot!!

In fact it is hard to read the values of back from the graph. However a plot of
against is much clearer. To produce a plot on a log scale we can use either of
the commands

plot(log10(n), log10(s), ’x’) % Two good plots

9

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 101 102
10−4

10−3

10−2

10−1

100
The data is hard to see. A log−log scale is better

A good plot reveals a relationship in the data.

Figure 2: Good Scaling for Plots

loglog(n, s, ’x’) % using log scales!

It reveals there is almost a linear relationship between the logs of these two quantities.

Exercise 17 1. Add a title to the last plot above and label the and axes.
2. Using help loglog find a command which will use a log scale only for the

data. Is this better or worse then the loglog plot?
3. (A hard exercise.) After allowing for some experimental error, there is a simple
relationship between and . Can you find a mathematical formula for this?

4. What would be the value of when ?

6. Matrices and Vectors
Although Matlab is a useful calculator, its main power is that it gives a simple way of
working with matrices and vectors. Indeed we have already seen how vectors are used
in graphs.

Remember to keep typing in the commands as they appear here, and observe and
understand the Matlab response. If you mistype, it is easy to correct using the arrows
and the [Del] key. Try to use the help facility to find out about unfamiliar commands.
Otherwise ask another student or a tutor.

6.1 Solving Equations.

Most people will have seen systems of equations from school. For example, we may
need to find , , and so that

Although these problems can be solved manually by eliminating unknowns, this is un-
pleasant. Besides errors usually occur.

In first year Mathematics the problem is rewritten in matrix-vector notation. We
introduce a matrix and a vector by

Now we want to find the solution vector so that

In spite of the new notation, it is still just as unpleasant to find the solution. In Matlab,
we can set up the equations and find the solution using simple commands.

% Set up a system
A = [1 2 -1; -2 -6 4 ; -1 -3 3] % of equations.
b = [1; -2; 1]
x = A\b % Find x with A x = b.

10

Matlab should give the solution

A sound idea from manual computations is to substitute the computed solution
back into the system, and make sure all equations are indeed satisfied. In Matlab we
can do this by checking that the matrix vector product gives the vector , or better
still, we check that is exactly the zero vector.

A*x % Check that Ax and b are the same.
b
A*x - b ; % So that we do not miss small differences,

% it is better to check that A x - b = 0 .

The vector is known as the residual.

Exercise 18

(a.) Change the middle element of from -6 to 5 (i.e. What is the solution
to this new system? What is the new residual? Why is the residual not exactly 0? (Hint:
In Matlab the number is displayed as 1.23e-005. The column vector

could be displayed as

1.0e-004 *
1.2300e-005

0.1234 or 4.4400e-006
0.0444

The user can control which form is used by the
item on the Matlab Menu bar.)

(b.) Suppose the middle element is changed from -6 to -5. CanMatlab solve this third
system? Explain what has happened.

6.2 Matrices and Vectors.

Much scientific computation involves solving very large systems of equations with

many millions of unknowns. This section gives practice with the commands that are
needed to work larger matrices.

The following code sets up a matrix, A, and then finds some of its important
properties. When [] is used to set up matrices, either blanks or commas (,) can be
used to separate entries in a row. Semicolons (;) are used to begin a new row.

A = [1 2 3 4 ; 1 4 9 16 ; 1 8 27 64 ; 1 16 81 256]
A’
det(A)
eig(A)
inv(A)

Even in the simple case, it is tedious to evaluate determinants and inverses. But
in Matlab they can be quickly calculated and used.

Indices can be used to show parts of a larger matrix. For example try

A(2,3), A(1:2,2:4), A(:,2), A(3,:)

In general A(i:j,k:l) means the square sub–block of A between rows i to j and
columns k to l . The ranges can be replaced by just ‘:’ if all rows or columns are to be
included.

Exercise 19

(a.) How would you display the bottom left corner of ? How would you find
the determinant of the upper left block of ?

(b.) Find the Matlab command to calculate the row echelon form of a matrix. The
row echelon form is never useful in practice, but it is handy for checking homework in
other subjects!!

6.3 Creating Matrices

Matlab also provides quick ways to create special matrices and vectors.

c = ones(4,3)
d = zeros(20,1)
I = eye(5)
D = diag([2 1 0 -1 -2])
L = diag([1 2 3 4], -1)

11

R = randn(5,5) % R is a 5 x 5 matrix
% of random numbers.

(More information on each of these commands can be found with help.)

Matrix-matrix and matrix-vector multiplication work as expected, provided the
dimensions agree. Matrices and vectors can both be multiplied by scalars. In the next
example, B is another matrix and c is a column vector of length 4 (i.e. a
matrix).

B = [1 1 0 0
0 2 1 0
0 0 3 1
0 0 0 4] % Rows can be separated by

% making a new line as well as using ‘;‘.
c = [1; 0; 0; -1]
5*B % Multiply scalars and matrices.
B*c % Multiply matrices and vectors.
A*B % Matrix by matrix multiplication.
B*A % Note: AB is not the same as BA !

Some of the following commands do not work. There is no harm in trying them.

c*c % Wrong dimensions for matrix multiplication.
c*A % Wrong dimensions for matrix multiplication.
c’ % The transpose of c, i.e. a row vector.
c’*A % Now matrix multiplication is permitted.
c*c’ % This multiplies a 4 x 1 by a 1 x 4 matrix.
c’*c % What is this quantity usually called?

Exercise 20

(a.) Calculate inv(A)*A and A*inv(A). Do they give the expected result? (Use
the help command if you can’t guess what the inv command does.)

(b.) Verify for the matrices and above that

(c.) Verify that the Matlab command A -1) can also be used to form the inverse of
A.

6.4 Systems of Equations

Consider again the problem of solving the system of equations . One obvious
way that appeals to Mathematicians is to calculate . As in the previous 3x3 case,
we should also check that the solution is correct. We do this by calculating the residual

, for our computed solution . Because of roundoff errors this residual may not
be exactly zero, but all its components should be small; say less than .

x = A^(-1)*b % Solve the equation A x = b
A*x , b % Check x is correct by making

% sure it satisfies the equations.
resid = A*x - b % Check the residual is zero,

% at least to within roundoff.

In fact it is far quicker, and usually more accurate, to solve equations using the
backslash operator () introduced in the first section; rather than calculating with the
inverse . The next lines use the backslash command to the solve the equations

, and check that it gives the same answers as those that were calculated using
.

x1 = A \ b % This is the fastest way to solve A x = b
x - x1 % Here both answers are the same.

Exercise 21

(a.) Solve the system of equations

using . Check that the computed solution does actually satisfy the equations (i.e. check
that , apart from rounding errors).

(b.) Use rand to generate a 700 x 700 matrix, A, and a column vector b of length
700. Solve the system of equations using the commands x = A b and x =
inv(A) * b , timing each command with a watch. Which command is the faster
and why? (Hint: before working with these large matrices use the clear command to
remove all variables from Matlab’s memory. This frees up enough memory to squeeze
in this largish problem. If you have problems, try a smaller system of equations that
fits onto the computer you are using.)

(c.) Use the Matlab command A = hilb(10) to set up the Hilbert matrix.

12

Create a right hand side vector by b = A(:,1). We are now going to solve the
equations . This is a common test problem in linear algebra. (What is the true
solution to the equations ?)

(i) Solve the equations using the backslash command, and then
check that the computed solution satisfies the equations by calculating the residual,

.

(ii) Now solve the equations by the command A^(-1)*b and calculate the
residual for this second solution.

(iii) Which gives the better (i.e. smaller) residual?

(iv) Which method gives the smaller error? (Explanation: As is the first
column of you can work out the true value of without computation. (Explain
this briefly.) The error is the difference between Matlab’s computed solution and the
true solution. (The true solution, the one you work out by abstract thought, can be
typed directly into Matlab.) The size of the error is the largest absolute value of the
components of the error vector.)?

(d.) Extend part (c.) by solving a slightly different problem. Let the right hand side
vector be the first column of , divided by 3; i.e.b = A(:,1)/3. (What is the
solution to the equation with this new right hand side?)

(i) What is the size of the error and the size of the residual when the is used
to solve the system with the new right hand side?

(ii) Extend the computation further by letting the right hand side be the th

column of divided by 3; i.e. b=A(:,j)/3 for Complete the
following table.

Column Size of the Residual Size of the Error
1 . .
2 . .
...

...
...

10 . .

What conclusions do you draw? If we are worried about the accuracy of a computed
solution is it sufficient to check that the solution satisfies the equations to within round
off errors? (Hint: If x_comp and x_true are the computed and true solutions the
size of the error can be found from max(abs(x_comp - x_true)).

This exercise should show that the backslash operator is both faster and
more accurate than the inverse. Clearly it is better to use the backslash and avoid
the calculating inverses in numerical work!

6.5 Polynomials

Knowing about vectors, we can use the Matlab procedures dealing with polynomials.
The polynomial is represented by the Matlab
vector , a row vector of length . In the following example,

is represented by the vector of coefficients .

v = [1 -3 -4] % Represents X^2 - 3 X -4
z = roots(v)
z(1)^ 2 -3*z(1) -4 % Two ways to evaluate the poly.
polyval(v,z(1)) % at the first root.

Exercise 22

(a.) The polynomial has real roots, but has complex roots.
Find these complex roots with roots.

(b.) Use help to find out how to useMatlab to calculate the derivative of a polynomial
inMatlab. Test thisMatlab command by calculating the derivative of

.

7. Graphs
Consider again the problem of graphing the functions, for example the function

over the interval . Althoughwe can useezplot orfplot, wewish to illustrate
more powerful methods, and the use of component-wise arithmetic.

13

7.1 Component Arithmetic

The new method is illustrated in the following lines.

x = (-5:.1:5)’ ;
y = x .* abs(x) ./ (1 + x.^2) ;
plot(x , y , ’-’)

The first command produces a vector of x values from -5 to 5 in steps of .1. That is
the column vector x= . The vector y contains the values of
at these x values. As there are so many points the graph of x against y looks like a

smooth curve.

The novelties here are the operators .* , ./ , and .^ in the second command.
These are the so called component–wise operators. In the above example x is a column
vector of length 101 and abs(x) is the column vector whose th entry is . The for-
mula x*abs(x) would be wrong, as this tries to multiply the matrix x by the

matrix abs(x). However the component-wise operation x.*abs(x) forms
another vector of length 101 with entries . Continuing to evaluate the expression
using component-wise arithmetic, we get the vector y of length 101 whose entries are

. More explicitly

x
...

abs(x)
...

x.*abs(x)
...

x.*abs(x)./(1+x.^2)
...

(Of course we should not become overconfident. This rule for dividing by vectors
cannot be used in Mathematics proper.)

Note that p.*q and p*q are entirely different. Even if p and q are matrices of the
same size and both products can be legitimately formed, the results will be different.

Exercise 23

1. (Easy) Find two 2 matrices and such that p.*q p*q.
2. (Hard) Find all 2 matrices and such that p.*q=p*q.

Before more exercises, we show how to add further curves to the graph above.
Suppose we want to compare the function we have already drawn, with the functions

and . This is done by the following three additional com-
mands. (Remember x already contains the x–values used in the plot. These new com-
mands are most easily entered by editing previous lines.)

y2 = x .* abs(x) ./ (5 + x.^2) ;
y3 = x .* abs(x) ./ (1/5 + x.^2) ;
plot(x,y,’-’, x,y2,’-.’, x,y3,’--’)

Exercise 24 (a.) Use Matlab to graph the functions , , and
on separate graphs.

(b.) Graph , for and , on the one plot. If you like
fine graphics the following command will do a nice label

title(’ it 1/(1+e^{ alpha x})for alpha=.5,1,2.-4’)

(Use ^ and _ for superscripts and subscripts in labels. Get Greek letters by using their
names preceded by .)

(c.) Use plot to draw a graph that shows

(Hint: Select a suitable range and a set of x values and plot . If you get mes-
sages about dividing by zero, it means you tried to evaluate when is exactly
0.)

7.2 Printing Graphs

When the graph has been correctly drawn we will usually want to print it. As many
graphs come out on the printer, it is a good idea to label the graph with your name. To
do this use the title command.

%Be sure to put quotes
title(’Exercise 3.4 Kim Lee.’) % around the title.

Bring the plot window to the front. The title should appear on the graph. If everything
is okay, click on the ‘file’ menu ‘print’ item in the graph window. If everything is
set up correctly, the graph will appear on the printer attached to your computer.

14

After printing a graph, it is useful to take a pen and label the axes (if that was
not done in Matlab), and perhaps explain the various points or curves in the space
underneath. Alternatively before printing the graph, use theMatlab commands title,
xlabel, ylabeland legend for a more professional appearance.

The most recent versions of Matlab let the user add text, lines and arrows interac-
tively once the graph is on the screen. Use the ‘tools’ menu, and tick the ‘show toolbar’
option to make the tools appear. You may then add text, arrows and lines to the plot by
pressing the buttons labelled ‘A’, and / .

Another option is to use theprint command inMatlab to print the current graph
to a file so that it can be printed later. For example if you have access to a postscript
printer use the command

print -deps mygraph

This will write the current graph to the file mygraph.eps. This file can be stored
on your floppy and printed out later.

7.3 Graphs in Reports

Instead of printing graphs directly, it is sometimes easier to copy Matlab graphs into
a word processor such as Windows Wordpad or MS Word. (A character editor such as
‘Notepad ’ is not good enough). Then the graph can be included as a part of a written
report.

The word processor must be open at the same time as we are using Matlab.
Move to theMatlab plot window, and use the menu subcommand.
(This copies the current graph into a buffer, a special storage area.)
Then move to the word processor, place the cursor where graph is to go, and press
Ctrl-V to paste the graph into the word processor.

Several graphs can be saved in a file this way and incorporated into the final report.
Ensure though that the report file is saved on your floppy disk when you leave, not left
on the internal hard drive.

If you are working in the computer laboratories, make sure the report file is small
enough to fit on a floppy; and make sure you store the report on the floppy and take
the floppy when you leave.

7.4 Saving Graphs

The easiest way to save a graph is to save the Matlab command you used to create the
graph. These are usually only one or two lines. If the commands are more than one or
two lines long, they should probably be saved in an M-file (see later chapters.)

7.5 Advanced Graphics

The commands given are sufficient to produce clear, simple graphs that suffice for
most projects. However, may people are moved to do more:- to alter the size and fonts
of labels, to change the thickness of lines etc. If you think this is necessary, more
information is available.

To demonstrate additional graphics features use the commandgraf2d. This pro-
gram can also be found via the demo command, visiting the language/graphics
area and the Line plotting option).
A complete tutorial, Using Matlab Graphics is available in the Matlab documen-
tation. In the menu item. Look for the link to
Full Documentation Set then the link to Using Matlab Graphics.

8. 3D Graphics

8.1 3D Basics

We have already seen that Matlab is able spectacular 3 dimensional plots by just typing
in the formula for the surface. To undertake more complicated graphing tasks we have
to be explicit obout the coordinates of our surface. This means we have to use the
component-wise operators and set up matrices for the and coordinates This is only
a little more complicated than the 2D case.

To draw the surface of for ,
, use the commands.

x=(-2:.2:2)’ ; y = (0:.2:2)’ ;

15

[X, Y] = meshgrid(x,y) ;
Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;
surf(X,Y,Z)
xlabel(’X’)
ylabel(’Y’) % Label axes to avoid confusion!
zlabel(’Z’)

To let us to ‘walk’ around the plot to see things from different angles give the command

rotate3d

(or press the rotation button on the figure’s toolbar). Once this command has been
given, click anywhere on the plot without releasing the mouse button. A box appears.
Dragging the mouse rotates the box. When the button is released, the graph is redrawn
from the new angle. Experiment a little!

The following commands draw slightly different mesh plots of the same function.

surfl(X,Y,Z) , surfc(X,Y,Z)

Instead of showing a complete surface, a‘wire frame’ is often faster to compute. This
is the purpose of the three mesh commands:-

mesh(X,Y,Z) meshz(X,Y,Z) meshc(X,Y,Z)

Exercise 25

(a.) Draw the above mesh and surface plots with a finer grid. (Use an grid
rather than the grid above.) Experiment with the three variants of the mesh
commands and the three variants of the surf commands.

(b.) Matlab can vary the colours . Look for a way to draw the surface in colors.
How can one spin the map?

(c.) Use the help command or the help window to find out how to draw a curve in 3-
space. (More help will be found under the topicgraph3d). Plot the curve

, for . Try not to use ezplot3.

8.2 Advanced Options

In three dimensions it is more difficult to draw a plot that is pleasing to the eye and
shows all the important features of a function.

The interactive demonstration graf3d is the best way to show the effects of
shading and coloring a surface. (This demonstration also found following links
after the demo command.)
The tutorialUsingMatlabGraphics in the online documentation goes into further
detail (controlling the position and colour of lights for example.)
The help command with the topics graphics, graph2d, and graph3d
provide more interesting features.

Exercise 26 Use the graf3d interactive demonstration to investigate the function
of two variables calculated by the Matlab peaks command. (Hint: By typing the
command rotate3d into the command box you can rotate the surface interactively.)
From appropriate plots

(a.) Find a plot which shows clearly there are 3 local maxima. Choose a color scheme
that can be used to determine the value of the maxima as accurately as possible.

(b.) Find another graph that shows as clearly as possible the locations of all local max-
ima and minima. (If you are submitting answers to this exercise, show the tutor your
graphs on the screen, and hand in the commands you use to generate the plots.)

9. Functions
Often we need to work with functions. For example, we may want to find theminimum
of a function, its zeros, or the definite integral of the function. This section explains
how to create functions and work with them in Matlab.

9.1 Writing a Function

To set up functions in Matlab, we need to create a file containing the Matlab code that
evaluates the function. These files are called function files. The name of the file must
always end with the ‘.m’ extension (for example fred.m, funct.m, etc.). Suppose
we need to work with the function

16

As this function has been called ‘f’, we will create the file f.m using theMatlab editor.
To open the editor press the new file icon (the left icon above the command window).
Once in the editor, type the following lines into the file.

% As the function is called ‘f’
% put this code in the file ‘f.m’

function y = f(x)
%
% % These are
% This is the test function. % comments.
% from section 9.
%

term1 = 1 ./((x-.3).^2 + .01) ;
term2 = 1 ./((x-.9).^2 + .04) ;
y = term1 + term2 - 6 ;

After the lines have been typed in, save the file (by pressing the disk icon). You will be
asked for a name; in this case use f.m. Then return to the command window.

If the code has been typed into the file correctly, we should be able to use f the
same way we use standard functions like sin and cos etc. For instance, can evaluate

, , and plot .

f(.3) % Check the code gives the correct answers
f(.9) % at two test points.

x = (-1 : .05 : 2)’; % Plot f between -1 and 2 .
plot(x , f(x)) ;

To guard against errors in the code we should check the answers. Pencil and paper
shows

and similarly = 21.7027. The Matlab answers should be the same. If these com-
mands do not work or give wrong answers, there is probably a typing error. If so, go
back into the file and correct the error. Save the file then try to use the function in
Matlab again.

SometimesMatlab does not notice the changes to the code and continues to report
errors after we have corrected them. This is usually because we have forgotten to save
the file to disk. Annother common cause is that we are editing a file in one directory

and Matlab is reading the file in another directory. But occasionally this is due to a
Matlab installation bug. To correct this bug, after changing code give the command

clear functions

9.2 Notes on Functions

Code is private

Let us look at the structure of ‘f.m’.

1. The first line (apart from comments) is the header. It declares that the value of x
comes from the main Matlab program (it is the input argument).

2. The value of y is calculated by the code in ‘f.m’ and returned to the main program
(it is the output argument).

3. The code in the ‘f.m’ is kept separate from the main Matlab command window,
so that term1 in the code for f is different to a variable term1 used in the main
program. More pessimistically, the function does not know the value of a variable
in the main program unless it is one of the input arguments.

Use . operators

It is best to use the component-wise operators in the code. (We used ./ rather
than / for example.) This allows Matlab to correctly evaluate f(x), even when x is
a vector. Otherwise plot commands will not work for our function.

Other editors

It is possible to use your favourite editor not just the inbuilt Matlab editor. To use
the windows notepad editor use the command

!notepad f.m & % Call the ’’Notepad’’ editor
% to edit the file f.m .
% Remember the & at the end.

(If you do not remember the ‘&’ at the end of this command, Matlab will refuse to run
until you quit notepad.)

17

Exercise 27 Write an M-file to code the function

(a.) Test your function by evaluating it at and

(b.) Test that your function works correctly when is a vector by evaluating for the
vector

(c.) Plot your function for using both fplot and the plot command.

We will now use our function to demonstrate minimization, zero finding,
and numerical integration in Matlab.

10. Using Functions
We continue to work with the function

coded in the previous section.

10.1 1D Minimization.

Matlab can find maxima and minima, but first we should read off the answers from a
graph.

Exercise 28 From the graph of , write down the values of which give

(a.) the minimum of on the interval ,

(b.) the minimum of on the interval ,

(c.) the maximum of on the interval , and

(d.) the maximum of on the interval .

The point at which takes its minimum is found using the function fmin.

xmin = fmin(’f’, .25, 1) , ymin = f(xmin)

This asks for the minimum of ‘f’ in the interval . The answer coincides with the
value expected from the graph. The procedure fmin uses a numerical method to find
the minimum. It repeatedly evaluates the function until it is confident the minimum
has been found to the required accuracy. In the above call to fmin the user did not
specify the accuracy required, so the standard (or default) accuracy was used. Reading
the information in help fmin tells us the default is a relative error of .

Accuracy

A better answer can be found by specifying the required accuracy in an extra
argument in fmin.

xmin_8 = fmin(’f’, .25,1, [0,1.e-8]), ymin_8 = f(xmin_8)

(1.e-8 is shorthand for .) With this call to fmin, xmin_8 should be accurate
to within a relative error of ; that is to about 8 significant digits. However,
we cannot see this extra accuracy at the moment, as answers are only displayed to 4 or
5 digits. To see the answer fully we must change the display format. (That is the way
Matlab displays numbers.) This can be done two ways:-

choose the ‘ ’ menu ‘ ’ item in the Command Window, and
then check any of the long formats, or
by use the command format long e.

Now Matlab displays enough significant digits in the numbers to see that the answers
are different.

[xmin ; xmin_8] % Compare the two answers

Displayed in the long format, we see the two answers differ after the 6th decimal place,
showing fmin has done more computations in the second case to get a slightly better
answer.

It is important to realise that format does not change the accuracy of the
numbers or the calculations: it just changes the number of digits displayed on the
screen. Our first answer xmin is still only accurate to about 6 significant figures,
even though it may be displayed to 15 figures.

18

Exercise 29 There are two ways to verify our answer

(1.) Evaluate at xmin and xmin_8 and see which answer gives the smaller value
of .

(2.) Evaluate at xmin_8-1.e-8 and xmin_8+1.e-8. The values either side
of the computed minimum should be larger.

To save space on the screen, we can change back to the short display using the
‘options’ menu or the ‘format short e’ command. Other useful formats are
long f and short f. Do not use the rational format for serious computations. The
fractions displayed are only approximations to the numerical answers.

Exercise 30

(1.) Find the minimum of on . Choose an error tolerance so that the minimum
is correct to . What is the value of at this point? If denotes the computed
solution, check the accuracy of the answer by evaluating at and
should be larger at both these neighbouring points. This shows the true minimum

should lie between and

(2.) Use fmin to find the maximum of . (Hint: There is no function fmax!
Instead, to find the maximum of , we can find the minimum of . This means
altering the code in the file ‘f.m’ so that it calculates rather than .) Use
as the original interval. Find the maximum point and the value of at the maximum
correct to .

(3.) Repeat the previous part and find the maximum of in the wider interval
. How accurate is the answer? Explain by looking at the graph of ! (It is useful

to graph a function before looking for a maximum or minimum!!)

10.2 Finding Zeros

Matlab also finds the zeros of functions; that is values of for which

For example, to find a zero of the function f near the point use the command

xzero = fzero(’f’ , -1)

The answer should be accurate to at least the default tolerance. (Which is in fact around

, even though the help file claims it is !!) The command help
fzero gives more information about changing the default tolerance.

Exercise 31

(1.) Check the previous result from fzero by

(a) Checking the answer is approximately true from the graph of ,
(b) Checking is approximately 0 at xzero.
(c) Checking is negative at xzero- and positive at xzero+ .

This shows that crosses the axis somewhere in the small interval between
xzero- and xzero+ .

(2.) Find the zero of near using the default tolerance. What answer is given
when the default tolerance is changed to and then to Check carefully
to find which answer is the most accurate.

10.3 Integration.

Matlab also uses functions when it evaluates definite integrals numerically. This is
known as quadrature or numerical integration. Suppose we want to evaluate
the integral of over , that is to find

(2)

(Or equivalently the area under the curve between and .) This is done
by the function quad8; for example.

integral1 = quad8(’f’, -1,2)

This command used quad8 to compute the answer to within the default accuracy. For
quad8 this is a relative accuracy of , or .1%. It is always wise to check,
so we can now get quad8 to do more work and try to achieve a relative accuracy of

. The two answers can then be compared, either by displaying them in a long
format or by dinding the difference between them.

integral2 = quad8(’f’, -1,2, 1.e-8)
[integral1 ; integral2] % Use a long formats

% to show the difference

19

(integral2-integral1)/integral2

The relative difference between these two answers is , suggesting the
first answer was much more accurate than expected! (Of course they could both be
wrong; but this is unusual.)

Accuracy

It is hard to check the accuracy of Matlab’s integration routine. One way is to
code up a simple method of numerical integration in Matlab. In this case we use the
midpoint rule. We divide the interval up into 15 smaller subintervals using the
grid points

The area under the curve on each intervalis approximated by
width of the interval midpoint of the interval

These individual approximations are then summed to get the overall area. That is we
approximate the area under by

This rule is concisely coded in Matlab by

x = (-.9 : .2 : 1.9)’ ; fx = f(x) ;
integral = sum(fx) * 3 / 15

This crude approximation is not as accurate as that computed by quad8. How-
ever it is an independent way to show us that our answer is approximately correct.

Exercise 32

(a.) Find the value of

to a relative accuracy of .01% using quad8.

(b.) Check the answer using the midpoint rule with 30 points. (Hint: Evaluate
at the points x=(-2.9:.2:2.9). Use a 60 point midpoint rule to give a better

answer.

-1 -.8 -.6 1.6 1.8 2

f(-.9)x.2 + f(-.7)x.2 ++ f(1.7)x.2 + f(1.9)x.2

.2

Figure 3: The Midpoint Rule.

11. Differential Equations.

11.1 Scalar ODE’s

The final application is the solution of ordinary differential equations. Suppose we
want to find the solution of the ordinary differential equation

(3)

This equation is a simple model for the spread of a disease. Consider a herd of
animals, and let be the proportion of animals infected by the disease after days.
Thus is the proportion of uninfected animals. New infections occur when

20

infected and uninfected animals meet. The number of such meetings is proportional
to . Thus a simple model for the spread of the disease is that the new
infections per day, , is proportional . That is we obtain equation
(3), where the constant depends on the density of the animals and the infectiousness
of the disease. For definiteness, suppose here animals and . Initially
at time there is just one infectious animal, and so we add the initial condition

(4)
We want to find how many individuals will be infected over the next 100 days, that is
to plot from to . To solve this problem we need to define a function
to calculate the right hand side of (3), and then use the Matlab program ode45. Use
the editor to put the following code into the file ‘disease.m’.

function u_dot = disease(t , u) % Place this code in
% % file disease.m
% Evaluates the rhs of the ode

k = .2 ;
u_dot = k * u * (1 - u) ;

(Although is not used in calculating u_dot, ode45 requires the function dis-
ease to have two input arguments (in the correct order). Use help ode45 for more
information.)

Having set up the problem, the differential equation is solved and graphed in just
one Matlab one line!

[t, u] = ode45(’disease’, [0,100] , 1/10000);
plot(t,u,’x’)

The function ode45 also has parameters which can be adjusted to control the
accuracy of the computation. Mostly, these are not necessary for just plotting the solu-
tion to ordinary problems. However ode45 does not guarantee its accuracy, and it is
always a good idea to check our original solution by resolving the problem with higher
accuracy requirements. For example, we can use ode45 so that the estimated absolute
and relative errors are kept less than . Also to ensure a very smooth graph,
values of the solution are computed every half day. This is done with the commands

options = odeset(’abstol’,1.e-9,’reltol’, 1.e-9) ;
[tt,uu] = ode45(’disease’, [0:.5:100], 1/10000, options);
plot(t,u,’x’, tt,uu,’-’)

We immediately see that the solution computed in the first call to ode45 lies on

top of the more accurate solution curve. That is the two solutions coincide to graphical
accuracy.

For this simple model it is possible to find an analytic formula for . In fact

where (5)

We can add this formula to the above graph as a final check.

t0 = (0:.5:100)’ ;
c = 10000-1 ; k = .2 ; u0 = 1 ./ (1 + c*exp(-k*t0)) ;
plot(t,u,’x’, tt,uu,’-’, t0,u0,’--’)

The exact formula gives a curve that is the same as the numerical solution. In fact
the difference between the two solutions is at most 2.5 . So we can be confident
in using ode45 to solve the problems below.

Exercise 33

(a.) Check that (5) is a solution to (3). That is, when we differentiate this formula for
we get the right side of (3). And this formula satisfies (4)

(b.)From the graph of , estimate howmany days are needed for half the population
to be infected? (Hint: The command grid will make this easier to answer.)

(c.) Suppose now that after the infection is noted at day , an inoculation program
is started from day 5, and 200 of the uninfected animals are inoculated per day. After
days, the proportion of animals inoculated per day is (
means max . This could be coded in Matlab as t5 = max([t-5,0]) for
example.) These inoculated animals cannot be infected, an new infections occur when
an uninfected, uninoculated animal meets an infected animal. Thus the rate of increase
of is now modelled by the differential equation

Now, how many animals are uninfected after 100 days with the inoculation program?

(d.) How many animals would be uninfected if only 100 animals could be inoculated
each day from day 5? How many animals would have been saved if 100 animals per
day were inoculated from day 0?

This simple model problem also has a formula for the exact solution. However
in Matlab it is very easy to get a numerical solution; and this can be done even in
complicated problems when there is no simple formulae for the solution. UsingMatlab

21

we can simply explore the model by altering the parameters and plotting the solutions!

11.2 Order 2 ODE’s

As a second example, consider the ordinary differential equation

(6)

(7)

This is a more complicated example because the second derivative of appears, not
just the first derivative. (This is called a second order ODE.) The Matlab ODE solvers
cannot use second derivatives directly as they only work with first derivatives. How-
ever a sneaky trick can be used. If we keep track of both and , then second
derivatives of are just first derivatives of . More formally, let denote
the value of . Then (9) is equivalent to the two equations

and

Even more elegantly, we let be a vector with the two components

and so

This is now in the form

where for any vector , is defined by

Thus to solve (9) and plot against we place the following code in the file
F.m

function Y_dot = F(t,Y)
% % Note Y(2) is the Matlab
% RHS for the 2nd order ODE % notation for the second
% % compontent of Y. It does

% % not mean Y(t) at time t=2
Y_dot = [Y(2) ; -sin(Y(1))] ;

Then we use the command

[t,Y] = ode45(’F’, [0:.25:20], [pi/4;0]); % Solve ODE and plot
u = Y(:,1) ; plot(t, u,’-’) % u(t).

Note that ode45 stores the first and second components of the solution in the first and
second columns of the output.

Exercise 34 In the equation (9) , is the angle a swinging pendulum makes with
the vertical axis at time . If the pendulum is of length , the weight of the pendulum
is at = . (The pendulum is swinging from the origin and
is at position when it is at rest.)

(a.) From the graph, what is the period of the pendulum?

(b.) Draw a graph of the pendulum’s path in the plane.

(c.) Often when the pendulum swings through small angles, the equation (9) is approx-
imated by

How different is the solution to this linear approximation to the exact solution? Are the
periods the same?

12. A Small Assignment
All numbers on a computer are stored as binary numbers. (These are like decimals,
except each digit is in base 2). So fractions like cannot be stored exactly, but will
have to be rounded to the nearest number that can be stored. The accuracy depends on
the number of digits used to store numbers on the computer. Typically each number
is stored so the accuaracy is at least 16 decimal digits. The relative error will be less
than . As the details of binary arithmetic vary among computers, the accu-
racy expected on a particular machine is summarised by the easily computed quantity

22

machine epsilon. Machine epsilon is defined as
machine epsilon

where here means the value computed by themachine under investigation.
Mathematically, is always positive, but when is large the computer will
not have enough digits to store exactly, and eventually it will have to be
rounded it down to 1. Then the computed value of will then be 0. The
model assignment question we will do here is

Question: Use Matlab to calculate machine epsilon on the Mathematics De-
partment’s computers. (Hint: Evaluate for = 50, 51, . . . , 55
.)

In principle, we can just type in the commands to get Matlab to evaluate
, , . . . one after the other. A better way is the

remember the component-wise operations and use the following commands.

format short e
k = (50:55)’ ; e = 2 .^(-k) ; er = (1+e) -1 ; tab = [k e er]

Here k is the vector of integers 50 . . . 55, and er contains the results of
. The table tab neatly summarises the computations. (Be sure to use the

format short e to display the results at the terminal. The fixed point format short
f is not suitable for answering this question, as some important small numbers will be
displayed as 0.)

The computed results in tab are enough to answer this model assignment ques-
tion, and we will need to hand up tab with the assignment. This could be done by
just copying numbers from the terminal screen, but it is quicker to cut and paste these
numbers to a word processor. Then we can neaten the table a little. Finally add some
explanation to make it into our answer to the question. (Please ask for a demonstration
if you do not know how to cut and paste numbers from the Matlab command window
to your favourite editor or word processor.)

12.1 Model Answer

The matlab code below computes the value of for =50,51,...,55. The
results are shown in the table. The smallest value of for which
is Thus machine epsilon is

Results for the Machine Epsilon Computations

k 2^(-k) (1 + 2^(-k))-1
-- --------- ---------
50 8.8818e-16 8.8818e-16
51 4.4409e-16 4.4409e-16
52 2.2204e-16 2.2204e-16
53 1.1102e-16 0
54 5.5511e-17 0
55 2.7756e-17 0

Matlab Code Used

k = (50:55)’ ; e = 2 .^(-k) ;
er = (1+e) -1 ; tab = [k e er]

This question is very short. But it does illustrate some important points which
hold for longer and more complicated problems.

The question posed is answered in sentences
Results are presented in tables (or graphs).
Code is included, but it is usually not necessary to discuss it.

13. Larger Projects
In this section we show how Matlab is best used to do a more complicated assignment.
It contains the following new ideas.

Running longer code from files, rather than typing a long string of commands
into the command window.
Some simple programming in Matlab, using the for and break statements.

23

13.1 M-Files.

Script M-file or just M-files are plain text files containing Matlab code. For example,
we may have 10 lines of Matlab code which computes results and then graphs the out-
put. It is tedious to type in these 10 lines as we develop and change the code (even if
we use the up arrow). However if we store the code in an M-file, say ass.m, then all
the code in the file can be run by just typing in the file’s name.

For example, let us place the following code from the 3D graphics section in the
file ass.m. (Open the Matlab editor and type in the code. If you are reading
the introduction on line, cut and paste the commands from the browser window to the
editor. Save the file using the name ass.m.)

% This code goes
% in the file ass.m .

x=(-2:.1:2)’ ; y = (-2:.1:2)’ ;
X, Y] = meshgrid(x,y) ;
Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;
surf(X,Y,Z)
xlabel(’X’); ylabel(’Y’); zlabel(’Z’)

Now this code will be run by the single Matlab command

ass % Run the code in the file ass.m

If there are errors (there always are), we can quickly make corrections with our
editor and run the code again. This is faster than repeatedly typing in the individual
commands. M-files should be used if our task needs more than about 6 lines ofMatlab.

ScriptM-files are similar to function files, but they donot contain the function
statement at the beginning. Moreover, all the variables in the script M-file are the same
as any variables appearing in the main Matlab command window. Thus running an M-
file gives exactly the same result as if the code had been typed in from the keyboard.
The names of these files must have the ‘.m’ extension (e.g. ‘ass.m’).

13.2 Some Programming

If is an approximate square root of , then it has long been known that

is general a better approximation. For example, starting with 1 and working with pencil
and paper we have the following rational approximations to

If we decide to stop after 20 approximations, this computation may be written formally
as

for

(8)

end
The third line in (8) does not mean equals , rather that the old value of
should be replaced with the new value .

In practice we may have an accurate answer before we have computed all 20 new
values of We could perhaps stop if is sufficiently small; but this is extra
computation. Instead, we will stop when the new value of is sufficiently close to
the previous value, that is if the calculations are not changing the answer very much.
Hopefully this means we are close to the true answer.

Formally our method becomes

for

if stop (9)

end

This can be coded in Matlab with a for statement, an if statement, and a break
statement.

24

% Code to find sqrt(a)
x=1
for k=1:20

xnew = (x+a/x)/2
if abs(x-xnew) =1.e-14, break, end
x = xnew

end

This code can go in the file mysqrt.m

Oncewe have typed the code into the file mysqrt.m, we can test the code inMatlab
with the command

a = 2 ; mysqrt % Run ysqrt with a=2
xnew, k % The approximation to 2^.5 was found

% after k steps.
xnew-sqrt(a) % Check accuracy.

Because mysqrt is not a function, the value of a can be used by the commands
in mysqrt. The results of the calculation can be found by looking at the values of
k and xnew in the main Matlab command window. This is particularly useful in
finding out what has gone wrong if something does not work.

Exercise 35 (a.) Adjust the code so that no intermediate results are printed out.

(b.) Run mysqrt with various values of a to complete the following table

Computed Steps needed Error in the approximation
2
3
4
20
1000

Hint: To avoid retyping, use the following code.

tab = [] ; % tab contains the table of results
for a = [2 3 4 10 100 1000]
mysqrt
err = xnew - sqrt(a);
tab = [tab ; a xnew k err]; % The new results are added

end % at the end of the table.

(c.) Add a new first line to mysqrt to change it to a function m-file. The input
argument should be the number a, the output argument should be the computed square
root, xnew

(d.) Alter the code so that mysqrt forms a table of values of k and xnew. Alter
the function statement so that the function returns this table as a second output value.

13.3 More Programming

Matlab contains the usual variety of statements to control the flow of programs. Details
of these may be found in the online documentation. From theHelp Desk follow the link
Getting Started then read about Flow Control.

InMatlab, traditional programming ideas using loops should be avoided. Suppose
I wish to graph a function on . Following the ideas of standard programs we could
use the code

for i = 0:200
x(i+1) = i/100 ;
y(i+1) = cos(x(i)*pi) ;

end
plot(x,y,’-’)

This is very, very slow, aswell as being ugly and cumbersome. The elegantMatlab
solution using component-wise operations is much nicer.

x = (0:.01:2)’ ; plot(x, cos(x*pi), ’x’)

13.4 Saving to Floppies.

To complete a big assignment you will need a number of sessions on the computer, and
it is essential to keep a permanent copy of your programs and results from one day to the

25

next. For this you will need at least one ‘double sided, high density, 3.5 inch ’ floppy
disk; that is, one that can contain up to 1.44 Meg. These are obtainable at a number of
shops on campus. (It is cheapest to buy a box of ten with 2 or 3 friends.) Please take
sensible precautions against loosing your disks.

When Matlab is started the default directory is D: TEMP, that is a directory on
the internal hard disk. This means all files and results saved fromwithin Matlab will be
stored in this directory. Similarly Matlab looks for all M-files in this direcory. Unfortu-
nately this directory is cleared when a new user logs on, and all work will be lost unless
you remember to copy all files from D: TEMP to your floppy. It is easy to forget to do
this.

Thus it is better to make your floppy the default directory. Make your very first
command in Matlab

cd a:\ % This should be the first Matlab command
% Your floppy is now the default directory.

Then you always have a copy of your work on your disk. Now you only have to re-
member to take your floppy our of the drive before you go.

14. Command Summary
The followingMatlab examples illustrate some commonly usedMatlab syntax. Consult
this list if you need to know small details (where punctuation occurs for example).

x = (22/7 -16 + 1.9)*3^2 ;
y = exp(-pi*i) ;

ezplot(’x^2/(1+x^2)’)
ezplot(’x^2+y^2-4’,[0,2],[0,2])
ezplot(’cos(t)’,’sin(t)’,[0,2*pi])
fplot(’[sin(x), x-x^3]’,[0,pi])

ezsurf(’xy^2 / (x^2+y^4)’)
ezsurf(’sqrt(1-t^2)*cos(s*pi)’, ...

’sqrt(1-t^2)*sin(s*pi)’, ’t’, [-1,1])

x = 0:.05:1 ;
fx = (1 + x) .* cos(x) ./ (3 - x.^2) ;
plot(x,fx,’--’) ;

x = -2:.2:2 ; y = 0:.2:2 ;
[X , Y] = meshgrid(x,y) ;
Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;
surf(X,Y,Z)

A = [2 3 4; 5 6 7; -1 -1 1] ;
col1 = A(:,1) ; row2 = A(2,:) ;
A_lower = A(2:3,2:3) ;
odd = 1:2:9 ; odd = odd’ ;

b = [1;2;3] ; x = A \ b ; % Solve A x = b
[U,Lam] = eig(A) ; % Find eigenvalues

% & eigenvectors.

I = eye(3) ; % Set up special matrices
S = rand(4,1) ;
T = diag(ones(4,1),-1) ...

+ diag(-2*ones(5,1)) ...
+ diag(ones(4,1),1);

x = 3 ;
for k = 1:30

x_new = (x + 3/x)/2 ;
if abs(x - x_new) < 1.e-12 , break , end

x = x_new ;
end

function yp = ff(t,y) % A new function.
yp = y / (1+ t^2) ;

26

