
123

A Problem Solving Approach

Learning MATLAB

U
N

IT
EX

T
U

N
IT

EX
T

Walter Gander

UNITEXT - La Matematica per il 3+2

Volume 95

Editor-in-chief

A. Quarteroni

Series editors

L. Ambrosio
P. Biscari
C. Ciliberto
M. Ledoux
W.J. Runggaldier

More information about this series at http://www.springer.com/series/5418

http://www.springer.com/series/5418

Walter Gander

Learning MATLAB
A Problem Solving Approach

123

Walter Gander
Departement Informatik
ETH Zürich
Zürich
Switzerland

ISSN 2038-5722 ISSN 2038-5757 (electronic)
UNITEXT - La Matematica per il 3+2
ISBN 978-3-319-25326-8 ISBN 978-3-319-25327-5 (eBook)
DOI 10.1007/978-3-319-25327-5

Library of Congress Control Number: 2015953792

Mathematics Subject Classification (2010): 65-XX

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Acknowledgment

I would like to thank Dr. Karl Knop for his interest in this project, for proofreading
several chapters and for solving problems and exercises.

v

Contents

1 Starting and Using MATLAB . 1
1.1 Organize Your Desktop. 1
1.2 MATLAB Scripts and Functions . 1

1.2.1 MATLAB Script. 2
1.2.2 MATLAB Function. 2

1.3 The Windows Environment . 4
1.4 The Linux Environment . 5
1.5 Using GNU Octave . 6
1.6 Documenting Results . 6
1.7 MATLAB-Elements Used in This Chapter 7
1.8 Problems and Exercises. 9

2 How a Computer Calculates . 11
2.1 Finite Arithmetic . 11
2.2 Rounding Errors. 12
2.3 IEEE-Arithmetic. 13
2.4 MATLAB-Elements Used in This Chapter 15
2.5 Problems. 16

3 Plotting Functions and Curves . 17
3.1 Plotting a Function . 17
3.2 Plotting Curves . 20
3.3 Plotting 3-d Curves . 20
3.4 Surface and Mesh Plots. 21
3.5 Contour Plots . 23
3.6 MATLAB-Elements Used in This Chapter 24
3.7 Problems. 27

4 Some Elementary Functions . 29
4.1 Computing the Exponential Function 30
4.2 Computing sin and cos . 32
4.3 Computing arctan. 32

vii

http://dx.doi.org/10.1007/978-3-319-25327-5_1
http://dx.doi.org/10.1007/978-3-319-25327-5_1
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-25327-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-25327-5_2
http://dx.doi.org/10.1007/978-3-319-25327-5_2
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_3
http://dx.doi.org/10.1007/978-3-319-25327-5_3
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_4
http://dx.doi.org/10.1007/978-3-319-25327-5_4
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec3

4.4 MATLAB-Elements Used in This Chapter 32
4.5 Problems. 33

5 Computing with Multiple Precision . 35
5.1 Computation of the Euler Number e . 35
5.2 MATLAB-Elements Used in This Chapter 41
5.3 Problems. 43

6 Solving Linear Equations . 43
6.1 Gaussian Elimination and LU Decomposition 43
6.2 Elimination with Givens-Rotations . 47
6.3 MATLAB-Elements Used in This Chapter 51
6.4 Problems. 52

7 Recursion . 57
7.1 Introduction. 57
7.2 Laplace Expansion for Determinants . 58
7.3 Hilbert Curves . 60
7.4 Quicksort . 63
7.5 MATLAB-Elements Used in This Chapter 64
7.6 Problems. 65

8 Iteration and Nonlinear Equations . 67
8.1 Bisection. 67
8.2 Newton’s Method. 68

8.2.1 Algorithm of Heron . 69
8.2.2 Fractal . 69

8.3 Circular Billiard . 70
8.4 MATLAB-Elements Used in This Chapter 74
8.5 Problems. 75

9 Simulation . 79
9.1 Event Simulation Using Random Numbers 79
9.2 Exhaustive Search . 84
9.3 Differential Equations . 87

9.3.1 Numerical Integrator ode45 . 88
9.3.2 Dog Attacking a Jogger . 90

9.4 MATLAB-Elements Used in This Chapter 94
9.5 Problems. 95

10 Solutions of Problems . 99
10.1 Chapter 1: Starting . 99
10.2 Chapter 2: How a Computer Calculates. 99
10.3 Chapter 3: Plotting Functions and Curves 102
10.4 Chapter 4: Some Elementary Functions. 105
10.5 Chapter 5: Computing with Multiple Precision. 109
10.6 Chapter 6: Solving Linear Equations. 113

viii Contents

http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_5
http://dx.doi.org/10.1007/978-3-319-25327-5_5
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_6
http://dx.doi.org/10.1007/978-3-319-25327-5_6
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_7
http://dx.doi.org/10.1007/978-3-319-25327-5_7
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_7#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_8
http://dx.doi.org/10.1007/978-3-319-25327-5_8
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_8#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_9
http://dx.doi.org/10.1007/978-3-319-25327-5_9
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_9#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_10
http://dx.doi.org/10.1007/978-3-319-25327-5_10
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec1
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec2
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec3
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec4
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec5
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec6
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec6

10.7 Chapter 7: Recursion . 123
10.8 Chapter 8: Iteration and Nonlinear Equations 128
10.9 Chapter 9: Simulation . 138

Bibliography . 149

Contents ix

http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec7
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec8
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec8
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec9
http://dx.doi.org/10.1007/978-3-319-25327-5_10#Sec9

Introduction

How to Use This Book

The goal of this book is to teach MATLAB by examples, that is, by showing how to
solve problems by designing an algorithm and implementing it in MATLAB. Cleve
Moler developed MATLAB originally for teaching linear algebra. MATLAB is the
acronym for “MATrix LABoratory.” Today MATLAB is a widely used computer
language for technical computing. This book is not meant to cover the whole range
of MATLAB. Rather it is an introduction to motivate the students to learn this
programming language.

The book is based on notes that have been written for a beginner course of
7 weeks with 3 hours of lectures and exercises per week, given at Qian Weichang
College at Shanghai University in the fall of 2014. I am indebted to Ying Su for her
help during that course and to Prof. Chuan-Qing Gu who invited me to lecture this
course.

Some examples were taken from the books [3], [4] and from the freely available
online book of the MATLAB creator [8].

Most programs developed in this course can also be run using the public domain
software GNU OCTAVE.1 The OCTAVE language is quite similar to MATLAB so that
programs are portable.

Programming environments like MATLAB are very large systems. Getting familiar
with the graphical user interface of MATLAB is for a beginner already a challenge.
Chapter 1 gives a few hints how to get organized.

It is not possible to get familiar with the whole MATLAB system in one semester,
not even in several semesters! My approach is therefore based on learning by doing.
Given a problem, one has to find a way to solve it using MATLAB. My experience is
that the students memorize much better MATLAB commands and programming
structures when they use it themselves. Therefore it is important to do the exercises
before consulting Chap. 10 where all solutions are given.

1http://www.gnu.org/software/octave/.

xi

http://dx.doi.org/10.1007/978-3-319-25327-5_1
http://dx.doi.org/10.1007/978-3-319-25327-5_10
http://www.gnu.org/software/octave/

Several topics of the book are taken from my area of interest: Scientific
Computing. The emphasis is, however, on programming. Showing how to compute
some elementary functions using the four basic operations (Chap. 4) is just a nice
programming exercise. Computations are mostly done with the usual IEEE arith-
metic implemented in MATLAB. Chapter 2 describes the principles of this finite
arithmetic. In Chap. 5 we use some of MATLAB’s integer arithmetic operations by
working with unsigned integers. We do not make use of any of the many toolboxes
of MATLAB, and especially we do not use Symbolic Math Toolbox Functions. It is
important to tell the students the difference when computing with a computer
algebra system versus using standard IEEE arithmetic.

The other book which also teaches MATLAB but focuses more on scientific
computing is [9].

Zürich, Switzerland Walter Gander
Summer 2015

xii Introduction

http://dx.doi.org/10.1007/978-3-319-25327-5_4
http://dx.doi.org/10.1007/978-3-319-25327-5_2
http://dx.doi.org/10.1007/978-3-319-25327-5_5

Some Historical Remarks on the Genesis
of MATLAB

Linear Algebra, especially matrix algebra, is of the utmost importance for scientific
calculations, as the solutions of many problems are constructed from fundamental
operations in this field. Nonlinear problems are often solved iteratively in such a
way that in each iteration step one has to solve a linear problem. These are
essentially matrix operations, solving linear systems of equations and eigenvalue
problems. This fact was recognized early on, so already in the 1960s, a program
library for linear algebra was being constructed. At that time, scientific computing
was performed exclusively in two programming languages, ALGOL 60 and
FORTRAN. A series entitled “Handbook for Automatic Computation” was started
by the Springer publishing company, so as to, one day, obtain a complete and
reliable library of computer programs. The documentation language was defined to
be ALGOL, as

indeed, a correct ALGOL program is the abstractum of a computing process for which the
necessary analyses have already been performed.2

The first volume of the handbook consists of two parts: In the first part A,
H. Rutishauser describes the reference language under the title “Description of
ALGOL 60” [10], in the second part B “Translation of ALGOL 60,” the three
authors Grau, Hill, and Langmaack [6] provide instructions on how to build a
compiler. We have to be aware that in those times the computers were delivered
with almost no software!

The second volume of the handbook, edited by Wilkinson and Reinsch,
appeared in 1971. Under the title of “Linear Algebra” [12], it contains various
procedures to solve linear systems of equations and eigenvalue problems.
The quality of this software is so good that the algorithms are still used today.

Unfortunately, this series of handbooks was discontinued, as the fast develop-
ment and distribution of information technology made any further coordination
impossible.

2Heinz Rutishauser in [10].

xiii

Because of the language barrier Europe—USA

The code itself has to be in FORTRAN, which is the language for scientific programming in
the United States.3

the LINPACK [2] project was executed in 1970s at Argonne National Laboratory.
LINPACK contains programs for the solution of fully occupied systems of linear
equations. They were based on the procedures of the handbook, but had been
renewed and systematically programmed in FORTRAN. This can be seen in the
unified conventions for naming, portability, and machine independence (e.g., ter-
mination criteria), use of elementary operations by calling the BLAS (Basic linear
Algebra Subprograms). The LINPACK Users Guide appeared in 1979. LINPACK
is also the name of a benchmark for measuring performance of a computer in
floating point operations. This benchmark used to consist of two parts: On the one
hand, a given FORTRAN program had to be compiled and executed to solve a fully
occupied 100 × 100 system of linear equations; on the other hand, a 1000 × 1000
system of linear equations had to be solved as fast as possible (using any adjusted
program). This benchmark,4 in a modified form, is now used every 6 months to
determine the 500 most powerful computers in the world, so as to list them in the
top 500 list, see http://www.top500.org.

Also the eigenvalue procedures from [12] were translated into FORTRAN and
are available under the name EISPACK [5], [11]. EISPACK and LINPACK were
replaced a number of years ago by LAPACK [1]. The LINPACK, EISPACK, and
LAPACK procedures (and many more) can be obtained electronically from the
online software library NETLIB, see http://www.netlib.org.

In the late 1970s, Cleve Moler developed the interactive program MATLAB

(MATrix LABoratory), initially only to provide a simple calculation tool for
lectures and exercises. The basis for this program, were programs from LINPACK
and EISPACK. As efficiency considerations were not of great importance, only
eight procedures from LINPACK and five from EISPACK for calculations with full
matrices were included. MATLAB was not only established as a useful teaching aid,
but also applied in contrary to the initial intention, in research and industry. The
initially public domain MATLAB [7], written in FORTRAN was completely over-
worked, extended and made it into an efficient engineering tool by the company
MathWorks.5 It is now written in C. This philosophy in the development of MATLAB

has led to a continuous writing of new function packages (so-called Toolboxes) for
various fields of application. The user community has a discussion platform
at MATLAB-Central http://www.mathworks.com/matlabcentral/?s_tid=gn_mlc_logo
with a lot of useful information.

3Citation from the preface of the LINPACK users guide.
4https://en.wikipedia.org/wiki/LINPACK_benchmarks.
5http://www.mathworks.com.

xiv Some Historical Remarks on the Genesis of MATLAB

http://www.top500.org
http://www.netlib.org
http://www.mathworks.com/matlabcentral/?s_tid=gn_mlc_logo
https://en.wikipedia.org/wiki/LINPACK_benchmarks
http://www.mathworks.com

Chapter 1
Starting and Using MATLAB

1.1 Organize Your Desktop

Get rid of not necessary openwindowsonyour computer.Weneed only twowindows:
onewindow for executingMatlab programs and a second one for writing programs.
Make these windows as high and large as possible so that you can have a good
overview of your programs and of the results. After starting Matlab it is a good
idea to write the command format compact. This command eliminates blank
lines and thus concentrates the output.

Notice thatMatlab programs are written as plain ASCII texts. You can use any
editor to write them. If you use a Linux operating system then Emacs or vi are very
good choices.

1.2 MATLAB Scripts and Functions

You will write inMatlab your own programs and your own functions. It is impor-
tant to distinguish between a program (or Matlab script) and a function. Matlab
scripts are “main programs” and functions which you write can be used in them. The
functions must be stored in the same directory where the script is which calls them.
A Matlab-script is stored as a M-file (a file with the suffix .m) and is executed in
the command window by typing its name without the suffix.

Notice that you may want to store your programs in a special directory not neces-
sarily the default directory where Matlab is called. For this you can use the com-
mandcdwhich is the abbreviation for “change directory”. For instance youmaywant
to write your programs in a directory called c:\LinearAlgebraProblems.
Then after callingMatlab you can change directory in the command window with

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_1

1

2 1 Starting and Using Matlab

>> cd c:\LinearAlgebraProblems

if you want to see what files are in that directory then use

>> ls

it will give you a list of all the files.

1.2.1 MATLAB Script

Assume that you are given a linear equation

ax + b = 0

and you would like to write a program to solve such equations. You could write the
following text and save it as an M-file:

% solves the linear equation a*x+b=0 for x.
a=input(’a=?’)
b=input(’b=?’)
if a˜=0,

x=-b/a
elseif b==0,

disp(’any x is solution’)
else

disp(’no solution’)
end

Now save this program under the name LinearScript.m and call this program
in theMatlab command-window to solve the equation 3x + 5 = 0

>> LinearScript
a=?3
a =

3
b=?5
b =

5
x =

-1.6667

1.2.2 MATLAB Function

A function can be called by differentMatlab scripts and also by other functions. A
function has input parameters and delivers results as output parameters. So for our
linear equation the input parameters are the two coefficients a and b and the output
parameter, the result, is the solution x . The function becomes

1.2 Matlab Scripts and Functions 3

function x=SolveLinear(a,b)
% SolveLinear solves the linear equation a*x+b=0
if a˜=0,

x=-b/a;
elseif b==0,

error(’any x is solution’)
else

error(’no solution’)
end

Save this function under the name SolveLinear.m. Note that the file name must
be the same as the function name. Now in order to apply the function we can write
in theMatlab window

>> SolveLinear(3,5)
ans =

-1.6667

Or we could type another Matlab script interactively in the Matlab window

>> b=1;
>> for a=-3:2

a
x=SolveLinear(a,b)

end
a =

-3
x =

0.3333
a =

-2
x =

0.5000
a =

-1
x =

1
a =

0
??? Error using ==> SolveLinear at 8
no solution

the program stops execution because a = 0.
It is better, however, is to write and save the script, say with the name

mainLinear.m. Then execute it in the Matlab-command window:

>> mainLinear
a =

-3
x =

0.3333
a =

-2
x =

0.5000

4 1 Starting and Using Matlab

a =
-1

x =
1

a =
0

Error using SolveLinear (line 8)
no solution
Error in mainLinear (line 4)
x=SolveLinear(a,b)

we get essentially the same output but it is more convenient to correct errors or
change the program.

1.3 The Windows Environment

To run Matlab on a PC, double-click on the Matlab icon. This will present the
following screen

The working directory will depend on where Matlab has been installed. To
check in which directory you are, use the command pwd which is the abbreviation
for “print working directory”. You then maybe get

>> pwd
ans =
C:Users\Administrator\Documents\MATLAB

1.3 The Windows Environment 5

or some similar information. To work in the directory

C:Users\myMatlabPrograms

use the command cd which is the abbreviation for “change directory”:

>> cd C:Users\myMatlabPrograms
>> pwd
ans =
C:Users\myMatlabPrograms

It is very convenient to workwith a script windowwhere youwrite your programs.
Write and store the program under some file name for instance LinearScript.m.
Then call it in theMatlab window

>> LinearScript

to execute it and get the results.
To quitMatlab at any time, type quit or exit at theMatlab prompt. If you

feel you need more assistance, you can:

• Access the Help Desk by typing doc at the Matlab prompt.
• Type help <subject> at theMatlab prompt, for instance if you like to know
more about functions you would type help function.

• Pull down the Help menu on a PC.

1.4 The Linux Environment

In a shell you call matlab and Matlab will present the following screen

6 1 Starting and Using Matlab

If you don’t want to work with the GUI then call matlab -n to obtainMatlab
in the same shell without desktop:

gander@pnb-502:˜$ matlab -n
Starting matlab as: /home/system/opt/matlab/default/bin/matlab -nodesktop

< M A T L A B (R) >
Copyright 1984-2013 The MathWorks, Inc.

R2013a (8.1.0.604) 64-bit (glnxa64)
February 15, 2013

--

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

>>

1.5 Using GNU Octave

Matlab without GUI looks very similar to GNU Octave. We start it here and call
SolveLinear(3,5):

gander@pnb-502:˜$ octave
GNU Octave, version 3.2.4
Copyright (C) 2009 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Octave was configured for "x86_64-pc-linux-gnu".

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org> (but first, please read
http://www.octave.org/bugs.html to learn how to write a helpful report).

For information about changes from previous versions, type ‘news’.

octave:1> SolveLinear(3,5)
ans = -1.6667
octave:2>

Newer versions of GNU Octave have also a GUI very similar to Matlab.

1.6 Documenting Results

An easy way to store results generated by computations is to use the command
diary. Assume you file LinearScript.m contains the following lines

1.6 Documenting Results 7

% solves the linear equation a*x+b=0 for x.
a=input(’a=?’)
b=input(’b=?’)
if a˜=0,

x=-b/a
elseif b==0,

disp(’any x is solution’)
else

disp(’no solution’)
end

If you use the diary command, you can store the results on a file. Assume you
want to store the results on the file MyResuts.txt. The you should write

>> diary MyResults.txt
>> LinearScript
a=?3
a =

3
b=?5
b =

5
x =

-1.6667
>> diary off

The file MyResults.txt will be generated in the same directory and contain the
session above:

LinearScript
a=?3
a =

3
b=?5
b =

5
x =

-1.6667
diary off

1.7 MATLAB-Elements Used in This Chapter

The description of theMatlab-elements is taken from the documentation center of
the MathWorks Webpage http://www.mathworks.com/.

format compact: Suppresses excess line feeds to show more output in a single
screen.

http://www.mathworks.com/

8 1 Starting and Using Matlab

M-file: executableMatlab file containingMatlab-commands. It has
to be stored in the same directory whereMatlab is called. You
can use the Matlab-editor or any other text editor to create
your .m-files. The files must be stored as plain ASCII text-files
with .m-extension.

pwd: Identify current folder
pwd displays the Matlab current folder.

cd: Change current folder
cd (newFolder) changes the current folder to newFolder.

ls: List folder contents
ls lists the contents of the current folder.

quit: Terminate MATLAB program
exit: Terminate MATLAB program (same as quit)
doc: Reference page in Help browser

doc name displays documentation for the functionality specified
by name, such as a function, class, or block.

help: Help for functions in Command Window
help name displays the help text for the functionality specified
by name, such as a function, method, class, or toolbox.

diary: Save Command Window text to file
diary(‘filename’)writes a copy of all subsequent keyboard input
and the resulting output (except it does not include graphics) to
the named file, where filename is the full pathname or filename
is in the current MATLAB folder.

diary off suspends the diary.
if-statement: See the script LinearScript.m. It has the form

if expression
statements

elseif expression
statements

else
statements

end

%: The percent sign is used to comment out a line. Comments are
also useful for programdevelopment and testing—comment out
any code that does not need to run. To comment out multiple
lines of code, you can use the block comment operators, %{ and
%}. The %{ and %} operators must appear alone on the lines
that comment out the block. Do not include any other text on
these lines.

1.7 Matlab-Elements Used in This Chapter 9

for: Execute statements specified number of times

for index = values
program statements

:
end

values has one of the following forms:

initval:endval increments the index variable from initval to endval by
1, and repeats execution of program statements until index is
greater than endval.

initval:step:endval incrementsindex by the valuestep on each iteration, or decre-
ments when step is negative.

valArray creates a column vector index from subsequent columns of
array valArray on each iteration. For example, on the first
iteration, index = valArray(:,1). The loop executes for
a maximum of n times, where n is the number of columns of
valArray, givenbynumel(valArray, 1, :). The input
valArray can be of anyMATLABdata type, including a string,
cell array, or struct.

input: Used to enter input from the keyboard.

result = input(prompt) displays the prompt string on
the screen, waits for input from the keyboard, evaluates any
expressions in the input, and returns the result.

disp: Used to display things on the screen.

disp(X) displays the contents of X without printing the vari-
able name.

function: See our function SolveLinear.

function [y1,...,yN] = myfun(x1,...,xM)
declares a function named myfun that accepts inputs
x1,...,xM and returns outputs y1,...,yN.

error: Display message and abort function.

1.8 Problems and Exercises

1. Start Matlab with the GUI and watch the introductory video and study the
tutorial.

2. If you own a computer or laptop withoutMatlab then download and install the
open source software GNU Octave on it.

Chapter 2
How a Computer Calculates

This section is an excerpt of the material presented in Chap.2 of [3]. It is
important to realize that a computer cannot perform numerical computations exactly
like one would expect them to be done in mathematics. Understanding its limitations
is essential for developing good programs.

2.1 Finite Arithmetic

A computer is a finite automaton. This means that a computer can only store a finite
set of numbers and performonly a finite number of operations. Inmathematics, we are
familiar calculating with real numbersR covering the continuous interval (−∞,∞),
but on the computer, we must contend with a discrete, finite set of machine numbers
M = {−ãmin, . . . , ãmax }. Hence each real number a has to bemapped onto amachine
number ã to be used on a computer.

In addition the finite set of machine numbersM contains only real numbers with
a limited fix number of digits. If this fixed number of digits is 8 then all numbers
with the same leading 8 digits will be mapped to the same machine number. The
machine numbers are represented as floating point numbers (here as example in
base 10) that is

ã = ±m × 10±e

with m = D.D · · · D the mantissa, e = D · · · D the exponent and D is a digit
D ∈ {0, 1, . . . , 9}. A nonzero machine number ã �= 0 is (to avoid ambiguity)
normalized which means, that the digit before the decimal point in the mantissa is
nonzero. The machine numbers are not spread regularly. They are dense near zero
and sparse at the end of the computation range [−ãmin, ãmax].

If a calculation leads to a result outside the computation range, then we speak
of overflow. There exists a smallest positive normalized machine number m. If we
compute b = m/2 then we would expect the result to be 0 because there is no
normalized machine number between 0 and m. Therefore the interval (−m,m) is

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_2

11

12 2 How a Computer Calculates

called the underflow range (but notice that IEEE arithmetic allow computations with
denormalized numbers).

The machine precision is traditionally defined to be the smallest machine number
eps > 0 such that on the computer

1 + eps > 1

holds. Newer definition just define eps as the spacing of the machine numbers in the
interval [1, 2].

2.2 Rounding Errors

Let ã and b̃ be two machine numbers; then c = ã × b̃ will in general not be a
machine number anymore, since the product of two numbers contains twice as many
digits. The computed result will therefore be rounded to a machine number c̃ which
is closest to c.

As an example, consider the 8-digit decimal machine numbers

ã = 1.2345678 and b̃ = 1.1111111,

whose product is

c = 1.37174198628258 and c̃ = 1.3717420.

The absolute rounding error is the difference ra = c̃ − c = 1.371742e−8, and

r = ra

c
= 1e−8

is called the relative rounding error.
On today’s computers, basic arithmetic operations obey the standard model of

arithmetic: for a, b ∈ M, we have

a⊕̃b = (a ⊕ b)(1 + r), (2.1)

where r is the relative rounding error with |r | < eps, the machine precision. We
denote with ⊕ ∈ {+,−,×, /} the exact basic operation and with ⊕̃ the equivalent
computer operation.

Another interpretation of the standard model of arithmetic is due to Wilkinson.
In what follows, we will no longer use the multiplication symbol × for the exact
operation; it is common practice in algebra to denote multiplication without any
symbol: ab ⇐⇒ a × b. Consider the operations

2.2 Rounding Errors 13

Addition: a+̃b = (a + b)(1 + r) = (a + ar) + (b + br) = ã + b̃
Subtraction: a−̃b = (a − b)(1 + r) = (a + ar) − (b + br) = ã − b̃
Multiplication: a×̃b = ab(1 + r) = a(b + br) = ab̃
Division: a/̃b = (a/b)(1 + r) = (a + ar)/b = ã/b

In each of the above, the operation satisfies

Wilkinson’s Principle

The result of a numerical computation on the computer is the exact result with slightly
perturbed initial data.

For example, the numerical result of the multiplication a×̃b is the exact result ab̃
with a slightly perturbed operand b̃ = b + br .

Cancellation

A special rounding error is called cancellation. If we subtract two almost equal
numbers, leading digits are canceled. Consider the following two numbers with 5
decimal digits:

1.2345e0
−1.2344e0
0.0001e0 = 1.0000e−4

If the two numbers were exact, the result delivered by the computer would also be
exact. But if the first two numbers had been obtained by previous calculations and
were affected by rounding errors, then the result would at best be 1.X X X Xe−4,
where the digits denoted by X are unknown.

2.3 IEEE-Arithmetic

Since 1985we have for computer hardware theANSI/IEEE Standard 754 for Floating
Point Numbers. It has been adopted by almost all computermanufacturers. The base is
B = 2. Expressed as decimal numbers this standard allows to represent numberswith
about 16 decimal digits and an exponent of 3-digits. More precisely the computation
range is the interval

M = [−ãmin, ãmax] = [−1.797693134862316e+308, 1.797693134862316e+308]

The standard defines single and double precision floating point numbers.
Matlab has also adopted IEEE-Arithmetic and computes by default with double

precision. We shall not discuss the single precision which uses 32 bits.
The IEEE double precision floating point standard representation uses a 64-bit

word with bits numbered from 0 to 63 from left to right. The first bit S is the sign
bit, the next eleven bits E are the exponent bits for e and the final 52 bits F represent
the mantissa m:

14 2 How a Computer Calculates

S

e
︷ ︸︸ ︷

E E E E E E E E E E E

m
︷ ︸︸ ︷

F F F F F · · · F F F F F
0 1 11 12 63

The value ã represented by the 64-bit word is defined as follows:

normal numbers: If 0 < e < 2047, then ã = (−1)S × 2e−1023 × 1.m where
1.m is the binary number created by prefixing m with an
implicit leading 1 and a binary point.

subnormal numbers: If e = 0 and m �= 0, then ã = (−1)S × 2−1022 × 0.m ,
which are denormalized numbers.
If e = 0 and m = 0 and S = 1, then ã = −0
If e = 0 and m = 0 and S = 0, then ã = 0

exceptions: If e = 2047 and m �= 0, then ã = NaN (Not a number)
If e = 2047 and m = 0 and S = 1, then ã = −Inf
If e = 2047 and m = 0 and S = 0, then ã = Inf

Using the hexadecimal format inMatlab we can see the internal representation of
a floating point number. We obtain for example

>> format hex
>> 2
ans = 4000000000000000

If we expand each hexadecimal digit to 4 binary digits we obtain the bit pattern for
the floating point number 2:

0100 0000 0000 0000 0000 0000 0000 0000 0000

We skipped with seven groups of four zero binary digits. The interpretation
is: +1 × 21024−1023 × 1.0 = 2.

>> 6.5
ans = 401a000000000000

This means

0100 0000 0001 1010 0000 0000 0000 0000 0000

Again we skipped with seven groups of four zeros. The resulting number is
+1 × 21025−1023 × (1 + 1

2 + 1
8) = 6.5.

From now on, we will stick to the IEEE Standard as used in Matlab. In other,
more low-level programming languages, the behavior of the IEEE arithmetic can be
adapted, e.g. the exception handling can be explicitly specified.

2.3 IEEE-Arithmetic 15

• The machine precision is eps = 2−52.
• The largest machine number ãmax is denoted by the constant realmax. Note that

>> realmax
ans = 1.7977e+308

• The computation range is the interval [−realmax, realmax]. If an operation
produces a result outside this interval, then it is said to overflow. Before the IEEE
Standard, computation would halt with an error message in such a case. Now the
result of an overflow operation is assigned the number ±Inf.

• The smallest positive normalized number is realmin = 2−1022.
• IEEE allows computations with denormalized numbers. The positive denormal-
ized numbers are in the interval [realmin ∗ eps, realmin]. If an operation
produces a strictly positive number that is smaller than realmin∗eps, then this
result is said to be in the underflow range. Since such a result cannot be represented,
zero is assigned instead.

• When computing with denormalized numbers, we may suffer a loss of precision.
Consider the following Matlab program:

>> format long
>> res=pi*realmin/123456789101112

res = 5.681754927174335e-322

>> res2=res*123456789101112/realmin

res2 = 3.15248510554597

>> pi = 3.14159265358979

The first result res is a denormalized number, and thus can no longer be repre-
sented with full accuracy. So when we reverse the operations and compute res2,
we obtain a result which only contains 2 correct decimal digits. We therefore
recommend avoiding the use of denormalized numbers whenever possible.

2.4 MATLAB-Elements Used in This Chapter

eps: the machine precision eps returns the distance from 1.0 to the next
largest double-precision number, that is eps = 2−52.

realmin: Smallest positive normalized floating-point number. n = realmin
returns the smallest positive normalized floating-point number in
IEEE double precision.

realmax: Largest positive floating-point number. n = realmax returns the
largest finite floating-point number in IEEE double precision.

16 2 How a Computer Calculates

format: format sets the display of floating-point numeric values to the default
display format, which is the short fixed decimal format. This format
displays 5-digit scaled, fixed-point values.

format hex: Hexadecimal representation of a binary double-precision number.
NaN: Not-a-Number

NaN returns the IEEE arithmetic representation for Not-a-Number
(NaN). These values result from operations which have undefined
numerical results.

Inf: Infinity
Inf returns the IEEE arithmetic representation for positive infinity.
Infinity values result from operations like division by zero and over-
flow, which lead to results too large to represent as conventional
floating-point values.

2.5 Problems

1. Consider the following finite decimal arithmetic: 2 digits for the mantissa and
one digit for the exponent. So the machine numbers have the form ±Z .ZE±Z
where Z ∈ {0, 1, . . . , 9}
(a) How many normalized machine numbers are available?
(b) Which is the overflow- and the underflow range?
(c) What is the machine precision?
(d) What is the smallest and the largest distance of two consecutive machine

numbers?

2. Solving a quadratic equation: Write aMatlab function

function [x1,x2]=QuadraticEq(p,q)

which computes the real solutions of an equation

x2 + px + q = 0.

If the solutions turn out to be complex then write an error message. Test your
program with the following examples:

• (x − 2)(x + 3) = x2 + x − 6 = 0 thus p = 1 and q = −6.
• (x − 109)(x + 2 · 10−9) = x2 + (2 · 10−9 − 109)x + 2
thus p = 2e−9 − 1e9 and q = −1e9.

• (x + 10200)(x − 1) = x2 + (10200 − 1)x − 10200

thus p = 1e200 − 1 and q = −1e200.

Comment your results.

Chapter 3
Plotting Functions and Curves

In this section we learn how to define functions in Matlab and how functions and
curves can be plotted.

3.1 Plotting a Function

Assume we would like to plot the function f (x) = 1 + sin x for x ∈ [0, 2π]. First
we have to program the function. One way to do this is to write a file with the name
f.m and store it in the same directory whereMatlabwas called. The file f.m looks
as follow

function y=f(x)
y=1+sin(x);

In theMatlab-window we can evaluate this function

>> y=f(0)
y =

1
>> y=f(pi/4)
y =

1.7071

Notice that pi is a predefined constant inMatlab.

>> pi
ans =

3.1416

also the imaginary unit i or 1i is predefined:

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_3

17

18 3 Plotting Functions and Curves

>> i
ans =

0.0000 + 1.0000i
>> 1i
ans =

0.0000 + 1.0000i
>> 1iˆ2
ans =

-1

It is better to use 1i in order to have the variable i free for other purposes.
Since machine number are a finite set we cannot really plot a continuous function.

We can only sample the function for say n equidistant values of x and connect
adjacent values by a straight line. Assume we compute n = 7 values of our function.
In Matlab we store the values in a vector (that is a one dimensional array). We
define the spacing between two function values by h:

>> h=2*pi/7
h =

0.8976
>> x=0:h:2*pi
x =
Columns 1 through 7

0 0.8976 1.7952 2.6928 3.5904 4.4880 5.3856
Column 8
6.2832

Notice the construction of this vector x. It has the form

x=startvalue : stepsize : endvalue

For each value of the vector x we want to evaluate our function. This can be done in
Matlab very compactly by just calling f with the vector x as argument

>> y=f(x)
y =
Columns 1 through 7
1.0000 1.7818 1.9749 1.4339 0.5661 0.0251 0.2182

Column 8
1.0000

Now we have computed two vectors x and y and we can connect the function values
by the plot command by straight line segments:

plot(x,y)

we get a new graphic window with the function plot (see first plot in Fig. 3.1). It does
not look very good. The spacing between the function values is too large! We can
easily improve this by using more function values:

x=0:0.01:2*pi;
plot(x,f(x))

3.1 Plotting a Function 19

First Plot Second Plot

Fig. 3.1 Plotting a function with different spacing

Now the plot looks much better (see second plot in Fig. 3.1).
Note that there is aMatlab-function called linspace:

>> x=linspace(0,2*pi)

it returns in x 100 equidistant values in the interval [0, 2π]. If you need 500 values
you can write x=linspace(0,2*pi,500).

Standard functions in Matlab can be called with vectors as arguments as we
just saw for f (x) = 1 + sin(x). For a vector x = (x1, . . . , xn) the function sin(x)
computes

sin(x) = [sin x1, sin x2, . . . , sin xn].

By adding 1 + sin(x) the term 1 is expanded to

ones(size(x))+sin(x)

so that the result is

1 + sin(x) = [1 + sin x1, 1 + sin x2, . . . , 1 + sin xn].

When we wish to construct functions that allow vectors as arguments we need
to use the dot operations. These are element by element operations. Consider for
instance the function.

g(x) = sin(x)

ex
.

Programming this function as

function y=g(x)
y=sin(x)/exp(x);

20 3 Plotting Functions and Curves

would not allow to call g(x)with a vector as argument. However, if we program g as

function y=g(x)
y=sin(x)./exp(x);

then the elements of the two vectors are divided element-wise and the result is what
we want.

3.2 Plotting Curves

If we wish to plot a circle with center C = (c1, c2) and radius r we need to know the
equation of the circle. In Cartesian coordinates the equations reads

(x − c1)
2 + (y − c2)

2 = r2.

Now to plot the circle in this representation wewould have to solve the equation for y
and we would obtain two functions y(x). Then we need to compute say 30 x-values
in the interval (c1 − r, c1 + r) and plot the two half-arcs for the two values of y.

There is a much simpler solution. We represent the same circle using a parameter
t by

x(t) = r cos t
y(t) = r sin t, t = 0, . . . , 2π.

Then we write

clear,clf
r=2
C=[0.5,1]
t=linspace(0,2*pi,60)
axis([-3,4,-2,4])
axis equal
hold
plot(C(1)+r*cos(t), C(2)+r*sin(t))
plot(C(1),C(2),’x’)

to get the plot in Fig. 3.2.

3.3 Plotting 3-d Curves

Consider to plot the space curve

x(t) = 3 cos t
y(t) = 5 sin t
z(t) = 2t.

3.3 Plotting 3-d Curves 21

Fig. 3.2 Plotting a circle
using parametric
representation

Fig. 3.3 Plotting a space
curve

Using the function plot3 and

>> t = 0:pi/50:10*pi;
>> plot3(3*cos(t), 5*sin(t),2*t)

we obtain Fig. 3.3.

3.4 Surface and Mesh Plots

Matlab offers many functions for visualizing. See the description on http://www.
mathworks.com/help/matlab/surface-and-mesh-plots-1.html. To visualize the sur-
face of a two dimensional function one has to define first a grid in the xy-plane
on which the function will be evaluated. The grid is defined with the function
meshgrid. For instance with

>> [x,y] = meshgrid(-1:1:1,0:1:3)
x =

-1 0 1
-1 0 1
-1 0 1
-1 0 1

http://www.mathworks.com/help/matlab/surface-and-mesh-plots-1.html
http://www.mathworks.com/help/matlab/surface-and-mesh-plots-1.html

22 3 Plotting Functions and Curves

y =
0 0 0
1 1 1
2 2 2
3 3 3

we get a grid of 12 points with the coordinates

(−1, 0) (0, 0) (1, 0)
(−1, 1) (0, 1) (1, 1)
(−1, 2) (0, 2) (1, 2)
(−1, 3) (0, 3) (1, 3)

.

To evaluate the function f (x, y) = x2 + y2 on that grid we compute

>> F=x.ˆ2+y.ˆ2
F =

1 0 1
2 1 2
5 4 5
10 9 10

To plot the surface of the function, Matlab offers two possibilities. The first one
connects the function values in both directions by a mesh:

>> mesh(x,y,F)

see the left picture in Fig. 3.4. The second possibility is to connect the Function values
by surfaces:

>> surf(x,y,F)

Fig. 3.4 mesh and surf function

3.4 Surface and Mesh Plots 23

Fig. 3.5 Finer grid for mesh and surf

We obtain the right plot in Fig. 3.4. Both figures look nicer if we use a finer grid:

[x,y] = meshgrid(-1:0.1:1,0:0.1:3)
F=x.ˆ2+y.ˆ2
mesh(x,y,F)
surf(x,y,F)

We get the plots in Fig. 3.5.

3.5 Contour Plots

A two dimensional function can also be represented by level lines as a contour plot.
Consider the function

f (x, y) = cos(y cos(x)).

To see the level lines of the function in the domain −π ≤ x ≤ π and 0 ≤ y ≤ 2π we
program

x=linspace(-pi,pi);
y=linspace(0,2*pi);
[X,Y]=meshgrid(x,y);
Z=cos(Y.*cos(X));
figure(1)
contour(X,Y,Z)
figure(2)
mesh(Z)

We obtain Fig. 3.6.

24 3 Plotting Functions and Curves

Fig. 3.6 Contour and mesh plot

3.6 MATLAB-Elements Used in This Chapter

pi: Predefined constant π = 3.141592653589793.

1i, i: the imaginary unit. It is recommended to use 1i since i may be
overwritten and used as variable.

clf: Clear current figure window.

clear: clear removes all variables from the current workspace, releasing
them from system memory.

axis: Axis scaling and appearance.

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes. axis equal sets the aspect ratio so that the data
units are the same in every direction. This is important to let a
circle not appear as an ellipse!

plot: We have used here the simplest form

plot(X,Y) creates a 2-D line plot of the data in Y versus the
corresponding values in X.
There are many useful other Matlab-function available, see
http://www.mathworks.com/help/matlab/line-plots.html.
A whole gallery of plot possibilities is discussed on http://www.
mathworks.com/discovery/gallery.html?s_tid=abdoc_plot.

colon (:) : Create vectors, array subscripting, and for-loop iterators

The colon is one of the most useful operators inMATLAB. It can
create vectors, subscript arrays, and specify for iterations.
A linearly spaced vector can be generated by

x=startvalue : stepsize : endvalue

http://www.mathworks.com/help/matlab/line-plots.html
http://www.mathworks.com/discovery/gallery.html?s_tid=abdoc_plot
http://www.mathworks.com/discovery/gallery.html?s_tid=abdoc_plot

3.6 Matlab-Elements Used in This Chapter 25

linspace: This function generates linearly spaced vectors.

y = linspace(a,b) generates a row vector y of 100 points linearly
spaced between and including a and b.
y = linspace(a,b,n) generates a row vector y of n points linearly
spaced between and including a and b.

ones: Create array of all ones. ExampleA=ones(3,2) creates a 3 × 2
matrix with all elements 1.

size: Array dimensions

d = size(X) returns the sizes of each dimension of array X in a
vector, d, with ndims(X) elements.

length: Length of vector or largest array dimension

numberOfElements= length(array) finds the number of elements
along the largest dimension of an array. array is an array of any
MATLAB data type and any valid dimensions. numberOfEle-
ments is a whole number of the MATLAB double class.
For nonempty arrays, numberOfElements is equivalent to
max(size(array)). For empty arrays, numberOfElements is zero.

clf: Clear current figure window

clf deletes from the current figure all graphics objects whose
handles are not hidden (i.e., their HandleVisibility property is set
to on).

\: The \-operator is used to solve a system of linear equations. If
you are given the matrix A and the right hand side b of a system
of linear equations

Ax = b

then the solution is computed in Matlab with

>> x=A\b

dot-operations: a dot preceding the operators *, /, ˆ causes an element-by-
element operation. Thus if x and y are vectors of the same length
then

x. ∗ y = [x1y1, x2y2, . . . , xn yn].

plot3: The plot3 function displays a three-dimensional plot of a set of
data points.

meshgrid: Rectangular grid in 2-D space.

26 3 Plotting Functions and Curves

[X,Y] = meshgrid(xgv,ygv) replicates the grid vectors
xgv and ygv to produce a full grid. This grid is represented by the
output coordinate arrays X andY. The output coordinate arrays X
andY contain copies of the grid vectors xgv and ygv respectively.
The sizes of the output arrays are determined by the length of the
grid vectors. For grid vectors xgv and ygv of length M and N
respectively, X and Y will have N rows and M columns.

mesh: Mesh plot.

mesh(X,Y,Z) draws a wireframe mesh with color determined
byZ, so color is proportional to surface height. If X andY are vec-
tors, length(X) = n and length(Y) = m, where [m,n] = size(Z).
In this case, (X(j), Y(i), Z(i,j)) are the intersections of the wire-
frame grid lines; X and Y correspond to the columns and rows
of Z, respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j))
are the intersections of the wireframe grid lines.

surf: 3-D shaded surface plot.

surf(X,Y,Z) uses Z for the color data and surface height. X
and Y are vectors or matrices defining the x and y components of
a surface. If X and Y are vectors, length(X) = n and length(Y) =
m, where [m,n] = size(Z). In this case, the vertices of the surface
faces are (X(j), Y(i), Z(i,j)) triples. To create X and Y matrices
for arbitrary domains, use the meshgrid function.

contour: draws a contour plot of a matrix.

contour(Z) draws a contour plot of matrix Z, where Z is
interpreted as heights with respect to the x-y plane. Z must be at
least a 2-by-2 matrix that contains at least two different values.
The x values correspond to the column indices of Z and the y
values correspond to the row indices of Z. The contour levels are
chosen automatically.
contour(Z,n) draws a contour plot of matrix Z with n con-
tour levels where n is a scalar. The contour levels are chosen
automatically.

hold: Retain current graph when adding new graph

The hold function controls whether MATLAB clears the current
graph when you make subsequent calls to plotting functions (the
default), or adds a new graph to the current graph.

3.7 Problems 27

3.7 Problems

1. We are given the points

x 0.9 2.3 3.9 4.6 5.8 7.3
y 2.9 4.1 4.8 7.0 7.0 8.7

(a) Define a region to plot the points using axis. Use hold to freeze the axis.
(b) Plot the points using the symbol ‘x’.
(c) We want to fit a regression line through the points, that means compute the

parameters a and b such that

yk = axk + b, k = 1, . . . , 6.

This is a linear system of equations with two unknowns and 6 equations.
It cannot be solved exactly, the equations contradict themselves. However,
the Matlab \-operator does solve the system in the least squares sense by
computing the best approximation for all equations.
Form the linear system A

(a
b

) = y and solve it by A\y.
(d) Using the computed values of a and b, plot the regression line on the same

plot with the points.

2. Ellipse plots.

(a) Plot the ellipse with center in origin and the main axis a = 3 on the x-axis
and minor axis b = 1. Plot also the center using the symbol ‘+’.

(b) Nowmove the ellipse so that the center is the point (4,−1) and the direction
of the main axis has an angle of −30◦ with the x-axis. Plot this new ellipse
in the same frame.

Hint: Use a rotation matrix of the form

Q =
(

cosα − sinα
sinα cosα

)

to rotate the coordinates of the ellipse.
3. Plot for −3 ≤ x ≤ 3 and −5 ≤ y ≤ 5 the function f (x, y) = x2 − 2yx3 using

contour and mesh.

Chapter 4
Some Elementary Functions

Standard functions are available in almost all programming languages. But how
could we actually compute them by using only the 4 basic arithmetic operations
{+,−,×, /}? Algorithms for computing standard functions on computers were
developed some 60 years ago. Today many of them are part of the hardware. In
spite of that it is interesting and challenging to try to develop a good algorithm for
some well known functions.

A useful tool to evaluate a function is its Taylor expansion:

f (x) = f (a) + f ′(a)
1! h + · · · + f (n)(a)

n! hn + Rn(a, x), (4.1)

with h = x − a. For the remainder we have the estimate

|Rn(x, a)| ≤ | f (n+1)(ξ)|
(n + 1)! |h|n+1

where ξ is a number between a and x . If the function is infinitely differentiable then
the remainder converges for n → ∞ and for some r (=the radius of convergence)
for all |x − a| < r to zero. Thus we get the Taylor series

f (x) =
∞

∑

i=0

f (i)(a)

i ! (x − a)i , (4.2)

which represents the function for |x − a| < r . If the expansion point a = 0 then the
series is called Maclaurin-series.

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_4

29

30 4 Some Elementary Functions

4.1 Computing the Exponential Function

For f (x) = ex all derivatives exist f (n)(x) = ex thuswith f (n)(0) = 1 theMaclaurin-
series becomes

ex =
∞

∑

i=0

xi

i ! . (4.3)

One can show that in this case the radius of convergence is r = ∞, thus Eq. (4.3)
can be used to compute ex for any x . Let’s develop a program to sum up the series
(4.3). The term

ai = xi

i !
can be computed by updating the preceding term ai−1 through

ai = x

i
ai−1.

We denote by sn the new and by so the old partial sum.We terminate the summation
when the relative difference between the new and the old partial sum is smaller than
10−6. Thus we obtain a first version:

function sn=e1(x);
%
so=0; sn=1; term=1; k=1;
while abs(sn-so)>1e-6*sn

so=sn; term=term*x/k;
sn=so+term; k=k+1;

end

Indeed we obtain

>> for x=[1,-1,10,-10,20,-20]
[e1(x) exp(x)]

end
ans =

2.718281801146385 2.718281828459046
ans =

0.367879464285714 0.367879441171442
ans =

1.0e+04 *
2.202646026627129 2.202646579480672

ans =
1.0e-04 *
0.453999364851671 0.453999297624848

ans =
1.0e+08 *
4.851649751360876 4.851651954097902

ans =
1.0e-08 *
0.562188480727156 0.206115362243856

4.1 Computing the Exponential Function 31

quite good results except for x = −20. We shall explain in the exercises why this
algorithm fails for large negative arguments. Since the algorithm seems to work well
for x > 0 we can make it work also for negative arguments by using the relation

e−x = 1

ex
(4.4)

thus compute first s = e|x | and then adjust the result

if x<0, s=1/s; end

We can also improve the termination criterion. For fixed x the terms

ak = xk

k! → 0, k → ∞

converge rapidly to zero. So we shall sum the series until in finite arithmetic we get
for the partial sum sk

sk + ak+1 = sk .

Thus we get the algorithm

function sn=Exp(x);
% EXP stable computation of the exponential function
% s=Exp(x); computes an approximation s of exp(x) up to machine
% precision.

if x<0, v=-1; x=abs(x); else v=1; end
so=0; sn=1; term=1; k=1;
while sn˜=so

so=sn; term=term*x/k;
sn=so+term; k=k+1;

end
if v<0, sn=1/sn; end;

This program works now perfectly

>> for x=[1,-1,10,-10,20,-20]
(exp(x)-Exp(x))/exp(x)

end
ans =

0
ans =

1.5089e-16
ans =

3.3033e-16
ans =
-2.9851e-16

ans =
1.2285e-16

ans =
-2.0066e-16

We obtain results that match the exponential function to machine precision.

32 4 Some Elementary Functions

4.2 Computing sin and cos

The Taylor series for the two trigonometric functions are obtained by the beautiful
relation

eix = cos x + i sin x Euler’s formula (4.5)

by expanding the Maclaurin series for eix and separating real and imaginary parts:

cos x =
∞

∑

k=0

(−1)k

(2k)! x2k = 1 − x2

2! + x4

4! − · · · (4.6)

sin x =
∞

∑

k=0

(−1)k

(2k + 1)! x2k+1 = x − x3

3! + x5

5! − · · · (4.7)

If we wish to use these expansions for computing cos x or sin x we have to expect
numerical problems for large arguments |x | � 1. This because the series are alter-
nating and affected by cancellation. The remedy is to reduce first the argument to the
interval [−π/2,π/2]. Then the series can be summed without too much cancellation
(see Problem 2).

4.3 Computing arctan

We know that the derivative of f (x) = arctan x is given by

d

dx
arctan x = 1

1 + x2
=

∞
∑

k=0

(−1)k x2k

The series converges for |x | < 1. Thus by integrating we obtain

arctan x =
∞

∑

k=0

(−1)k x2k+1

2k + 1
= x − x3

3
+ x5

5
− · · · (4.8)

We shall use this series to compute arctan in Problem5.

4.4 MATLAB-Elements Used in This Chapter

for: Execute statements specified number of times.
for index=values, program statements, end
repeatedly executes one or more Matlab statements in a loop.
values can be:

4.4 Matlab-Elements Used in This Chapter 33

• initval:endval
increments the index variable from initval to endval by 1, and repeats
execution of program statements until index is greater than endval.

• initval:step:endval
increments index by the value step on each iteration, or decrements
when step is negative.

• valArray
The loop executes for a maximum of n times, where n is the number
of columns of valArray.

while: Repeatedly execute statements while condition is true.
while expression, statements, end
repeatedly executes one or moreMatlab program statements in a loop as
long as an expression remains true

mod: Modulus after division
M = mod(X,Y) returns the modulus after division of X by Y. In general, if
Y does not equal 0, M =mod(X,Y) returns X - n.*Y, where n = floor(X./Y).
If Y is not an integer and the quotient X./Y is within roundoff error of an
integer, then n is that integer. InputsX andYmust have the samedimensions
unless one is a scalar double. If one input has an integer data type, then the
other input must be of the same integer data type or be a scalar double.
(will be used in the problem section)

4.5 Problems

1. Explain what happens in Algorithm e1when x = −20. Hint: look at the size of
the largest term and at the final result. What happens when computing the result
in finite arithmetic?

2. Write a Matlab-function to compute sin x using the series (4.7). In order to
avoid cancellation for large |x | reduce the argument to the interval [−π/2,π/2].

3. Do the same for cos x .
4. Combine both functions and write a function to compute tan x .
5. Write a function to compute arctan x for |x | < 1 using the series (4.8) and com-

pare your result with the standard Matlab-function atan(x).

Chapter 5
Computing with Multiple Precision

In this section we shall show how to perform some computations with more digits
than given by the IEEE floating point arithmetic. The problems of this section will
need integer operations and variables of integer data types. It is an opportunity to
learn the corresponding Matlab features.

5.1 Computation of the Euler Number e

We shall compute the Euler number e = exp(1) to an arbitrary number of decimal
digits. For this we will use the algorithm e1 in Chap.4 which we developed to
compute the exponential function using the Taylor series. The series is evaluated for
for x = 1:

e =
∞

∑

k=0

1

k! . (5.1)

Using the notations a = 1/k! for the kth term and s for a partial sum we get the
function

function s=Eulerconstant;
s=1;sn=2; a=1; k=1; % initialization
while s˜=sn
s=sn; k=k+1;
a=a/k; % new term
sn=s+a; % new partial sum

end

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_5

35

http://dx.doi.org/10.1007/978-3-319-25327-5_4

36 5 Computing with Multiple Precision

Indeed we obtain with

>> format long
>> s=Eulerconstant
s =

2.718281828459046

a result with 16 decimal digits which iswhatwe can expect by using IEEE-arithmetic.
If we want to compute more digits we need to simulate multiple precision arithmetic.
In the above algorithm the only arithmetic operations are

k = k + 1, a = a/k and sn = s + a.

For k wemay use a simple variable.We shall not compute somany terms of the Taylor
series that also k has to be represented in multiple precision arithmetic. The partial
sum and the terms to be added, however, have to be multiple precision numbers.
We shall store the digits of a multiple precision number in a integer array. There are
several integer data types inMatlab available. Here we shall use uint321. which
is a data type for unsigned integers.

This function is used for conversion to 32-bit unsigned integers. These 32-bit
numbers cover the range from 0 to 232 −1 = 4294967295. Let a be an array of such
unsigned integer numbers. We represent the number 1 using 20 digits:

>> a=uint32(zeros(1,20));
>> a(1)=1
a =
Columns 1 through 10

1 0 0 0 0 0 0 0 0 0
Columns 11 through 20

0 0 0 0 0 0 0 0 0 0

If we wish to divide this number by k=2 we should get the result

a =
Columns 1 through 10

0 5 0 0 0 0 0 0 0 0
Columns 11 through 20

0 0 0 0 0 0 0 0 0 0

Another division by k=3 should give

a =
Columns 1 through 10

0 1 6 6 6 6 6 6 6 6
Columns 11 through 20

6 6 6 6 6 6 6 6 6 6

1For Numeric Matlab Types see http://www.mathworks.com/help/matlab/numeric-types.html

http://www.mathworks.com/help/matlab/numeric-types.html

5.1 Computation of the Euler Number e 37

We would like to see the digits not as elements of a vector but continuously as large
number. This can be done by using the function sprintf (sprintf formats data
into a string of characters).

>> sprintf(’%01d’,a)
ans =
01666666666666666666

Let us program this division. We need to use a function for integer division. In
Matlab this is the function idivide. For the remainder we use the function mod.
Suppose we want to divide 14 by 3. The result is: quotient = 14/3 = 4 and
remainder = mod(14,3) = 2. Programmed inMatlab this is

quotient=idivide(14,3) remainder=mod(14,3)

Thus our division function becomes

function a=Divide1(k,a)
% divides the integer array a by integer number k
n=length(a);
c=10;
remainder=a(1);
for i=1:n-1
a(i)=idivide(remainder,k);
remainder=mod(remainder,k)*c+a(i+1);

end
a(n)=idivide(remainder,k);

Let us test this function. The following script divides the initial number a=1 with
the numbers k = 2, . . . , 15. Thus the last result should be 1/15!:
clear, clc, format long
res=[];
a=zeros(1,30,’uint32’);
a(1)=1;
for k=2:15
a=Divide1(k,a);
res =[res;sprintf(’%01d’,a)];

end
res
1/factorial(15)

res =
050000000000000000000000000000
016666666666666666666666666666
004166666666666666666666666666
000833333333333333333333333333
000138888888888888888888888888
000019841269841269841269841269
000002480158730158730158730158

38 5 Computing with Multiple Precision

000000275573192239858906525573
000000027557319223985890652557
000000002505210838544171877505
000000000208767569878680989792
000000000016059043836821614599
000000000001147074559772972471
000000000000076471637318198164
>> 1/factorial(15)
ans =

7.647163731819816e-13

It looks good! Notice that the smaller the numbers get the more leading zeros appear.
It is not necessary to divide these leading zeros by k since they remain zero. We use
the variable imin to count the number of leading zeros in the vector and start the
division at position a(imin+1). The division function changes so to

function [A,imin]=Divide(c,imin,k,A)
% DIVISION divides the multiple precision number A by the integer
% number k. The first imin components of A are zero. imin is updated
% after the division. c defines the number of decimal digits in one
% array element: c=10 is used for one digit, c=100 for two digits etc.
n=length(A);
if imin <n % if imin=n => A=0
first=1;
remainder=A(imin+1);
for i=imin+1:n
A(i)=idivide(remainder,k);
if A(i)==0
if first % update imin

imin=i;
end

else
first=0;

end
if i<n
remainder=mod(remainder,k)*c+A(i+1);

end
end

end

Notice at the beginning of the division the variableimin is updated if a(i) becomes
zero. After the first nonzero element the update is stopped. The following test shows
that imin counts the leading zeros correctly:

% Testprogram for Divide for c=10 or c=100
clear, clc, format long
a=zeros(1,30,’uint32’);
imin=0;
a(1)=1;
c=100;
if c==10, w=’%01d’; else w=’%02d’; end

5.1 Computation of the Euler Number e 39

res =[sprintf(’%5d’,imin),’ ’,sprintf(w,a)];
for k=2:15
[a,imin]=Divide(c,imin,k,a);
res =[res; sprintf(’%5d’,imin),’ ’,sprintf(w,a)];

end
res

res =
0 100000000000000000000000000000
1 050000000000000000000000000000
1 016666666666666666666666666666
2 004166666666666666666666666666
3 000833333333333333333333333333
3 000138888888888888888888888888
4 000019841269841269841269841269
5 000002480158730158730158730158
6 000000275573192239858906525573
7 000000027557319223985890652557
8 000000002505210838544171877505
9 000000000208767569878680989792
10 000000000016059043836821614599
11 000000000001147074559772972471
13 000000000000076471637318198164

So far we can generate the terms of the series of Eq. (5.1). Next we need to sum up
the terms. Let s denote the partial sum and t the next term. The function Add.m is
straightforward

function r=Add(imin,s,a);
% ADD adds the multiprecision number a to s without carry. It is
% supposed that s>a and that imin leading components of a are zero
n=length(s);
r=s;
for i=imin+1:n
r(i)=s(i)+a(i);

end

but we have to take care of possible carry and so we need also to sweep over the
array with

function s=Carry(c,s);
% CARRY normalizes the component of s such that 0 <= s(i) < c
% and moves the carry to the next component
n=length(s);
for i=n:-1:2
while s(i)>=c
s(i)=s(i)-c; s(i-1)=s(i-1)+1;

end
end

40 5 Computing with Multiple Precision

Our main program becomes

function s=EmultPrec(c,n);
% EMULTPREC computes n*log10(c) decimal digits of
% the Euler constant e=exp(1). The digits are stored
% in the array s.
a=zeros(1,n,’uint32’); % define array of
s=a; % unsigned integers
a(1)=1; s(1)=2;
k=1; imin=0; % imin skips leading zeros
while imin<n
k=k+1;
[a,imin]=Divide(c,imin,k,a); % new term
s=Add(imin,s,a); % new partial sum
s=Carry(c,s);

end

With these preparations we can now compute

>> s=EmultPrec(10,10)
s =

2 7 1 8 2 8 1 8 2 3
>> e=sprintf(’%01d’,s)
e =
2718281823

To compute more digits we use

>> s=EmultPrec(10,60); e=sprintf(’%01d’,s)
e =
271828182845904523536028747135266249775724709369995957496673

Because of Rounding errors some of the last printed digits are not correct. We can
check this by computing 10 more digits:

>> s=EmultPrec(10,70); e=sprintf(’%01d’,s)
e =
2718281828459045235360287471352662497757247093699959574966967627724050

So we see that the last two digits of s=EmultPrec(10,60) are affected by
rounding errors.

Packing More Digits in One Array Element

The parameter c of EmultPrec controls how many digits are stored in one array
element. If we change it to c=100 we work with two digits per array element and
get

>> s=EmultPrec(100,30); e=sprintf(’%01d’,s)
e =
27182818284594523536287471352662497757247936999595749646

5.1 Computation of the Euler Number e 41

Note that the printed result is wrong! Zeros are missing, e.g. for the sequence after
the 13th digit we get 5945 instead of 59045. We have to adjust the format to print 2
digits with leading zero if necessary:

>> s=EmultPrec(100,30); e=sprintf(’%02d’,s)
e =
027182818284590452353602874713526624977572470936999595749646

Now the result is correct.

5.2 MATLAB-Elements Used in This Chapter

uint32: Convert to 32-bit unsigned integer.
intArray = uint32(array) converts the elements of an array into unsigned
32-bit (4-byte) integers of class uint32.
intArray: Array of class uint32. Values range from 0 to 232 − 1

zeros: Create array of all zeros.
X=zeros(sz) returns an array of zeroswhere size vector sz defines size(X).
For example, zeros([2 3]) returns a 2-by-3 matrix.
X = zeros(1,3,‘uint32’)
Create a 1-by-3 vector of zeros whose elements are 32-bit unsigned inte-
gers.

idivide: Integer division with rounding option.
C = idivide(A, B) is the same as A./B except that fractional quotients are
rounded toward zero to the nearest integers.

mod: Modulus after division.
M = mod(X,Y) returns the modulus after division of X by Y. In general,
if Y does not equal 0, M = mod(X,Y) returns X − n.*Y, where n =
floor(X./Y).

sprintf: Format data into string
str = sprintf(formatSpec,A1,...,An) formats the data in arraysA1,...,An ac-
cording to formatSpec in column order, and returns the results to string str.

5.3 Problems

For the following problems, make use of the functions we developed for computing
Euler’s number e.

1. Compute using multiple precision the powers of 2:

2i , i = 1, 2, . . . , 300.

42 5 Computing with Multiple Precision

2. Write a program to compute factorials using multiple precision:

n!, n = 1, 2, . . . , 200.

3. Compute π to 1000 decimal digits. Use the relation by C. Størmer:

π = 24 arctan
1

8
+ 8 arctan

1

57
+ 4 arctan

1

239
.

Hints:

• Compute first a multiprecision arctan function using the Taylor-series (4.8) as
proposed in Chap.4:

arctan x =
∞

∑

k=0

(−1)k x2k+1

2k + 1
= x − x3

3
+ x5

5
− · · ·

• The above series is alternating so there is a danger of cancellation. However,
since it is used only for |x | < 1 this is not much a concern. What we need is
a new funtion Sub

function r=Sub(c,a,b)
% SUB computes r=a-b where a and b are multiprecision numbers
% with a>b.

to subtract two multiprecision numbers. One has to be careful not to generate
negative numbers, all intermediate results have to remain positive.

• To compute π we have to evaluate for some integer p > 1 the function
arctan(1/p). When generating the next term after

tk = x2k+1

2k + 1

for x = 1/p we have to form

tk+1 = tk/p2/(2k + 1).

There is bug that one has to avoid: by dividing the last term twice by p and a
third time by 2k + 1 the variable imin is updated. For the next term we need
to know the value of imin before the division by 2k + 1! Otherwise we will
get erroneous results when forming tk/p2.

http://dx.doi.org/10.1007/978-3-319-25327-5_4
http://dx.doi.org/10.1007/978-3-319-25327-5_4

Chapter 6
Solving Linear Equations

In this chapter we shall develop a method to solve linear equations. Given a matrix
A and a right hand side b

A =
⎛

⎜

⎝

a11 a12 · · · a1n
...

... · · · ...

am1 am2 · · · amn

⎞

⎟

⎠ , b =
⎛

⎜

⎝

b1
...

bm

⎞

⎟

⎠

then a solution of Ax = b is given in Matlab by x=A\b. Notice that Matlab
produces a solution for any values of n and m. The \-operator is very powerful but
to understand it one has to know what it computes. We shall explain here only the
cases when m = n and m > n.

m = n: We have as many equations as unknowns. If the matrix A is non-singular
then the linear system has exactly one solution x = A−1b.

m > n: The system is overdetermined, it has more equations than unknowns. In
general there is no solution, the equations contradict themselves. A way to find
a good “solution” was given by Carl Friedrich Gauss who invented the Least
Squares Method. This method determines a solution vector x by minimizing the
length of the residual r = b − Ax:

‖r‖22 = ‖b − Ax‖22 = min.

6.1 Gaussian Elimination and LU Decomposition

Given an n×n linear system, the usualway to compute a solution is byGaussian elim-
ination. In the first step the unknown x1 is eliminated from equations two to n, leaving
a reduced (n − 1)× (n − 1)-system containing only the unknowns x2, . . . , xn . Con-
tinuing the elimination steps we finally obtain an equation with the only unknown xn .
The original system is thus transformed and reduced to a triangular system U x = y:

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_6

43

44 6 Solving Linear Equations

⎛

⎜

⎜

⎜

⎝

u11 u12 · · · u1n

u22 · · · u2n

. . .
...

unn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x1
x2
...

xn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

y1
y2
...

yn

⎞

⎟

⎟

⎟

⎠

and the solution is easily computed by back-substitution. One can show that by this
elimination process the matrix A is factorized in a product of a unit lower triangular
matrix L and an upper triangular matrix U :

A = LU.

The elimination process is mathematically equivalent with transforming the linear
system by multiplying it from the left with the non-singular matrix L−1:

Ax = b =⇒ L−1Ax = L−1b ⇐⇒ U x = y.

Things get a bit more complicated if the equation which should be used for
eliminating xk does not contain this variable. Then one has to permute the equations
to continue the elimination process. This partial pivoting strategy is used when
solving equations by the \-operator. If no equation is found which contains xk in
the kth elimination step or if the coefficient of xk is very small then the system is
considered to be singular and a warning message is issued:

Warning: Matrix is close to singular or badly scaled. Results

may be inaccurate. RCOND = 4.800964e-18.

The Matlab-function lu computes the LU-factorization of a matrix. We enter a
5 × 5 matrix:

>> A = [12,1,2,2,10; 14 4 15 6 1

2 8 14 14 13

14 14 7 12 14

9 14 12 14 10]

A =

12 1 2 2 10

14 4 15 6 1

2 8 14 14 13

14 14 7 12 14

9 14 12 14 10

Notice that the elements on a row are separated by spaces or by a comma. A new
row can either be started on the same line by inserting a semicolon or by typing it on
a new line. Next we call the function lu:

6.1 Gaussian Elimination and LU Decomposition 45

>> [L,U,P]=lu(A)

L =

1.0000 0 0 0 0

0.6429 1.0000 0 0 0

0.8571 -0.2125 1.0000 0 0

0.1429 0.6500 -0.9970 1.0000 0

1.0000 0.8750 0.9716 -0.3442 1.0000

U =

14.0000 4.0000 15.0000 6.0000 1.0000

0 11.4286 2.3571 10.1429 9.3571

0 0 -10.3562 -0.9875 11.1312

0 0 0 5.5655 17.8727

0 0 0 0 0.1483

P =

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

We obtain two triangular matrices L and U and a permutation matrix P . They are
related by

P A = LU.

Let’s check this and compute LU and P A:

>> L*U

ans =

14.0000 4.0000 15.0000 6.0000 1.0000

9.0000 14.0000 12.0000 14.0000 10.0000

12.0000 1.0000 2.0000 2.0000 10.0000

2.0000 8.0000 14.0000 14.0000 13.0000

14.0000 14.0000 7.0000 12.0000 14.0000

>> P*A

ans =

14 4 15 6 1

9 14 12 14 10

12 1 2 2 10

2 8 14 14 13

14 14 7 12 14

As expected, the product LU is equal to the permuted matrix A.
Consider now a vector for the right hand side:

46 6 Solving Linear Equations

>> b=[1:5]’

b =

1

2

3

4

5

Notice that 1:5 is the abbreviation for the vector [1,2,3,4,5] and the apostrophe
transposes the vector to become a column vector. The solution of Ax = b is given
by x=A\b.

>> x=A\b

x =

5.4751

-13.7880

-11.1287

25.9130

-8.0482

The \-operator computes in this case first a LU -decomposition and then obtains the
solution by solving L y = Pb by forward-substitution followed by solving U x = y
with backward-substitution. We can check this with the following statements.

>> y=P*b

y =

2

5

1

3

4

>> y=L\y

y =

2.0000

3.7143

0.0750

0.3748

-1.1939

>> x=U\y

x =

5.4751

-13.7880

-11.1287

25.9130

-8.0482

6.2 Elimination with Givens-Rotations 47

6.2 Elimination with Givens-Rotations

In this section we present another elimination algorithm which is computationally
more expensive but simpler to program and which can be used also for least squares
problem.

We proceed as follow to eliminate in the i th step the unknown xi in equations
i + 1 to n. Let

(i) : aii xi + . . . + ain xn = bi
...

...

(k) : aki xi + . . . + akn xn = bk
...

...

(n) : ani xi + . . . + ann xn = bn

(6.1)

be the reduced system. To eliminate xi in equation (k) we multiply equation (i) by
− sinα and equation (k) by cosα and replace equation (k) by the linear combination

(k)new = − sinα · (i) + cosα · (k), (6.2)

where we have chosen α so, that

anew
ki = − sinα · aii + cosα · aki = 0. (6.3)

No elimination is necessary if aki = 0, otherwise we can use Eq. (6.3) to compute

cot α = aii

aki
(6.4)

and get
cot = A(i, i)/A(k, i);
si = 1/sqrt (1 + cot ∗ cot);
co = si ∗ cot.

(6.5)

In this elimination we do not only replace equation (k) but seemingly unneces-
sarily also equation (i) by

(i)new = cosα · (i) + sinα · (k). (6.6)

Doing so we do not need to permute the equations as with Gaussian Elimination.
This is done automatically. We illustrate this for the case if aii = 0 and aki �= 0. Here
we obtain cot α = 0 thus sinα = 1 and cosα = 0. Computing the two Eqs. (6.2)
and (6.6) results in just permuting them!

48 6 Solving Linear Equations

The Givens Elimination algorithm is easy to program since we can useMatlab’s
vector-operations. To multiply the i th row of the matrix A by a factor co= cos(α)

cos(α)[ai1, ai,2, . . . , ain]

we use the statement

co*A(i,:)

Thecolonnotation is an abbreviation for A(i,1:n)ormore generalA(i,1:end).
The variable end serves as the last index in an indexing expression. Thus the new
i th row of the matrix becomes

A(i,:)=co*A(i,:)+si*A(k,:)

By doing so we overwrite the i th row of A with new elements. This makes it impos-
sible to compute the new kth row since we need the old values of the i th row! We
have to save the new row first in a auxiliary variable h and assign it later:

A(i,i)=A(i,i)*co+A(k,i)*si;

h=A(i,i+1:n)*co+A(k,i+1:n)*si;

A(k,i+1:n)=-A(i,i+1:n)*si+A(k,i+1:n)*co;

A(i,i+1:n)=h;

Since A(k,i) becomes zero we do not compute it. Also we do not use A(i,:)
but rather A(i,i+1:n) since the elements on the row before the diagonal are zero
and don’t have to be processed.

We propose here a more elegant solution without auxiliary variable. The Givens
elimination is performed by transforming the two rows with a rotation matrix

(

c s
−s c

) (

A(i, i) A(i, i + 1) . . . A(i, n)
A(k, i) A(k, i + 1) . . . A(k, n)

)

An assignment statement in Matlab cannot have two results. But by using the
expression A(i:k-i:k,i+1:n)we can change both rows of A in one assignment
with one result. Thus we get the compact assignments

A(i,i)=A(i,i)*co+A(k,i)*si;

S=[co,si;-si,co];

A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);

In the same way we also change the right hand side. Putting all together we obtain
the function:

6.2 Elimination with Givens-Rotations 49

function x=EliminationGivens(A,b);
% ELIMINATIONGIVENS solves a linear system using Givens-rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens-rotations.
[m,n]=size(A);
for i= 1:n
for k=i+1:m

if A(k,i)˜=0
cot=A(i,i)/A(k,i); % rotation angle
si=1/sqrt(1+cotˆ2); co=si*cot;
A(i,i)=A(i,i)*co+A(k,i)*si;
S=[co,si;-si,co];
A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);
b(i:k-i:k)=S*b(i:k-i:k);

end
end;
if A(i,i)==0

error(’Matrix is rank deficient’);
end;

end
x=zeros(n,1);
for k=n:-1:1 % backsubstitution
x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end
x=x(:);

The transformation of Ax = b to the reduced system U x = y is done this
time with Givens rotations. These rotation matrices are not only non-singular but
also orthogonal (a matrix Q is orthogonal if Q�Q = I). Transformations with
orthogonal matrices leave the length invariant:

z = Qr =⇒ ‖z‖22 = z�z = (Qr)� Qr = r� Q�Qr = r�r = ‖r‖22.

Therefore the solution of minimizing the length of the residual r = b − Ax does not
change of we multiply the system by an orthogonal matrix:

Ax = b ⇐⇒ Q� Ax = Q�b.

WithGivens eliminationwe therefore can solve linear n×n-systems and also overde-
termined systems in the least square sense. The Matlab \-operator solves least
squares systems using orthogonal transformations.

We illustrate this with the following example. We wish to fit a function of the
form

y = at + b

t
+ c

√
t

50 6 Solving Linear Equations

to the points
t 1 2 3 4 5
y 2.1 1.6 1.9 2.5 3.1

Inserting the points we get the linear system

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1
2 1/2

√
2

3 1/3
√
3

4 1/4
√
4

5 1/5
√
5

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

a
b
c

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

2.1
1.6
1.9
2.5
3.1

⎞

⎟

⎟

⎟

⎟

⎠

We get with GivensElimination the same result as withMatlab’s \-operator:

% file CurveFit.m
A=[1 1 1

2 1/2 sqrt(2)
3 1/3 sqrt(3)
4 1/4 sqrt(4)
5 1/5 sqrt(5)];

b=[2.1 1.6 1.9 2.5 3.1]’;

t=[1:5]’;
plot(t,b,’o’)
hold
x=EliminationGivens(A,b)
y=A\b
pause % compare x with y, they are the same
xx=[1:0.1:5];
yy=y(1).*xx+y(2)./xx+y(3).*sqrt(xx);
plot(xx,yy)

>> CurveFit
x =

1.0040
2.1367
-1.0424

y =
1.0040
2.1367
-1.0424

6.3 Matlab-Elements Used in This Chapter 51

6.3 MATLAB-Elements Used in This Chapter

mldivide, \ : (backslash-operator) Solve systems of linear equations Ax = B for
x

x =A\B solves the systemof linear equationsA*x=B. Thematrices
A and B must have the same number of rows. MATLAB displays a
warningmessage ifA is badly scaled or nearly singular, but performs
the calculation regardless.

: Colon

J:K is the same as [J, J+1, ..., K].

J:K is empty if J>K.

J:D:K is the same as [J, J+D, ..., J+m*D] where m=fix((K-J)/D).

J:D:K is empty if D == 0, if D>0 and J>K, or if D<0 and J<K.

COLON(J,K) is the same as J:K and COLON(J,D,K) is the same as J:D:K.

The colon notation can be used to pick out selected rows, columns

and elements of vectors, matrices, and arrays. A(:) is all the

elements of A, regarded as a single column. On the left side of an

assignment statement, A(:) fills A, preserving its shape from before.

A(:,J) is the J-th column of A. A(J:K) is [A(J),A(J+1),...,A(K)].

A(:,J:K) is [A(:,J),A(:,J+1),...,A(:,K)] and so on.

lu:

[L,U,P] = LU(A) returns unit lower triangular matrix L, upper
triangular matrix U, and permutationmatrix P so that P*A = L*U.

planerot: Givens plane rotation

[G,y] = planerot(x) where x is a 2-component column vector, returns
a 2-by-2 orthogonal matrix G so that y = G*x has y(2) = 0.

’ ctranspose: Complex conjugate transpose

b = a’ computes the complex conjugate transpose of matrix a
and returns the result in b.
The following commands are used in the problem section.

52 6 Solving Linear Equations

pause: Halt execution temporarily

pause, by itself, causes the currently executing function to stop and
wait for you to press any key before continuing. Pausing must be
enabled for this to take effect. (See pause on, below.) Pause with-
out arguments also blocks execution of Simulink models, but not
repainting of them.

pause(n) pauses execution for n seconds before continuing, where
n is any nonnegative real number. Pausing must be enabled for this
to take effect.

tril: Lower triangular part of matrix

L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of
X.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

triu: Upper triangular part of matrix

U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of
X.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

diag: Create diagonal matrix or get diagonal elements of matrix

D = diag(v) returns a square diagonal matrix with the elements of
vector v on the main diagonal.

D = diag(v,k) places the elements of vector v on the kth diagonal. k
= 0 represents the main diagonal, k> 0 is above the main diagonal,
and k < 0 is below the main diagonal.

x = diag(A) returns a column vector of the main diagonal elements
of A.

x = diag(A,k) returns a column vector of the elements on the kth
diagonal of A.

6.4 Problems

1. LU-decomposition Consider the linear system Ax = b defined by the matrix

>> format short e, format compact
>> n=5; A=invhilb(n), b=eye(n,1)

6.4 Problems 53

(a) Apply Gaussian Elimination (without pivoting) to reduce the system to
U x = y

for j=1:n-1 % Elimination
for k=j+1:n
fak=A(k,j)/A(j,j);
A(k,j:n)=A(k,j:n)-fak*A(j,j:n);
b(k)=b(k)-fak*b(j);

end
end

Watch the elimination process by displaying the matrix and the right hand
side after each elimination step. Use the pause statement to stop execution.

(b) Next store the factors fak instead of the zeros you introduce by eliminat-
ing x j :

for j=1:n-1 % Elimination
for k=j+1:n
fak=A(k,j)/A(j,j);
A(k,j)=fak; % store factors instead zeros
A(k,j+1:n)=A(k,j+1:n)-fak*A(j,j+1:n);

end
end

Now use the commands triu, tril, diag to extract L andU from A and
verify that indeed LU = A.

2. Replace the computation of the rotation matrix S in our function
EliminationGivens by theMatlab-function planerot. Convince your-
self that you get the same results with the modified function by solving the curve
fitting example again.

3. Determine the parameters a and b such that the function f (x) = aebx fits the
following data

x 30.0 64.5 74.5 86.7 94.5 98.9
y 4 18 29 51 73 90

Plot the points and the fitted function.

Hint: If you fit log f (x) the problem becomes very easy!

4. The following statistics lists the population of Shanghai since 1953:

year in million
1953 6.2044
1964 10.8165
1982 11.8597
1990 13.3419
2000 16.4077
2010 23.0192

54 6 Solving Linear Equations

Fit a polynomial through these data and predict the population for 2016 and 2020.
Plot your results.

5. Fitting of circles. We are given the measured points (ξi , ηi):

ξ 0.7 3.3 5.6 7.5 6.4 4.4 0.3 −1.1
η 4.0 4.7 4.0 1.3 −1.1 −3.0 −2.5 1.3

Find the center (c1, c2) and the radius r of a circle (x − c1)2 + (y − c2)2 = r2 that
approximate the points as well as possible. Consider the algebraic fit: Rearrange
the equation of the circle as

2c1x + 2c2y + r2 − c21 − c22 = x2 + y2. (6.7)

With w = r2 − c21 − c22, we obtain with (6.7) for each measured point a linear
equation for the unknowns c1, c2 and w.

• Write a function function drawcircle(C,r) to plot a circle with cen-
ter (C(1),C(2)) and radius r.

• Computer the center and the radius and plot the given points and the fitted
circle.

6. Seven dwarfs are sitting around a table. Each one has a cup. The cups containmilk,
all together a total of 3 liter. One of the dwarfs starts distributing his milk evenly
over all cups. After he has finished his right neighbor does the same. Clockwise
the next dwarfs proceed distributing their milk. After the 7th dwarf has distributed
his milk, there is in each cup as much milk as at the beginning. How much milk
was initially in each cup?

Hint: Let x = (x1, x2, . . . , x7)� be the initial milk distribution. Thus
∑7

j=1 x j =
3. Simulate the distributing of milk as matrix-vector Operation:

x(1) = T1x.

After 7 distributions you obtain x(7) = x and thus

x = T7T6 · · · T1x

or (A − I)x = 0 where A = T7T6 · · · T1. Add to this homogeneous sys-
tem the equation

∑7
j=1 x j = 3 and solve the system using our function

EliminationGivens. Compare the results you get with those when using
Matlab’s \-operator.

6.4 Problems 55

7. The following sections were measured on the street AD depicted in Fig. 6.1.

AD = 89m,AC = 67m,BD = 53m,AB = 35m and CD = 20m

Balance out the measured sections using the least squares method.

A B C D

Fig. 6.1 Street

Chapter 7
Recursion

7.1 Introduction

Recursion is a powerful concept in computer science. The basic idea is that the
solution of a problem often can be reduced to solving some smaller instances of
the same problem. Recursive solutions can be applied to many problems, one well
known strategy is called divide and conquer.

A function is sometimes defined recursively. For instance the factorial, the function

f (n) = n! = 1 × 2 × 3 × · · · × n

can be defined recursively by

0! = 1

f (n) = n × f (n − 1), n > 0.

In Matlab we could just use the expression prod(1:n) or factorial(n) to
compute this function. To show the concept of recursion we program the function

function f=Factorial(n)
if n==0,

f=1;
else

f=n*Factorial(n-1);
end

The function f is calling itself in its definition. This is called a recursive func-
tion. A recursion that contains only one single self-reference is known as single
recursion, while a recursion that contains multiple self-references is known as
multiple recursion. A single recursion can be programmed easily as an iteration,
which is simpler and more efficient. For our factorial example we would get

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_7

57

58 7 Recursion

function f=FactorialIteration(n)
f=1;
for k=1:n

f=k*f;
end

We get for all variants the same

>> n=10;
>> [prod(1:n),factorial(n), FactorialIteration(n), Factorial(n)]
ans =

3628800 3628800 3628800 3628800

7.2 Laplace Expansion for Determinants

The determinant of a matrix A can be computed using the Laplace Expansion. For
each row i we have

det(A) =
n

∑

j=1

ai j (−1)i+ j det(Mi j), (7.1)

where Mi j denotes the (n − 1) × (n − 1) submatrix obtained by deleting row i
and column j of the matrix A. Thus computing the determinant of A is reduced to
compute n smaller determinants of the submatrices Mi j . Instead of expanding the
determinant as in (7.1) along a row, we can also use an expansion along a column.

The followingMatlab program is an example formultiple recursion, it computes
a determinant using the Laplace Expansion for the first row:

function d=DetLaplace(A);
% DETLAPLACE determinant using Laplace expansion
% d=DetLaplace(A); computes the determinant d of the matrix A
% using the Laplace expansion for the first row.

n=length(A);
if n==1;
d=A(1,1);

else
d=0; v=1;
for j=1:n

M1j=[A(2:n,1:j-1) A(2:n,j+1:n)];
d=d+v*A(1,j)*DetLaplace(M1j);
v=-v;

end
end

In Matlab the function det computes the determinant in a more efficient way
(using Gaussian Elimination) than our recursive function. The following examples
show both results:

7.2 Laplace Expansion for Determinants 59

for n=4:9
A=rand(n);
[det(A) DetLaplace(A)]

end
ans =

0.128257928707307 0.128257928707307
ans =

-0.084250098064663 -0.084250098064664
ans =

-0.181256419130385 -0.181256419130385
ans =

-0.022309977397375 -0.022309977397376
ans =

-0.006338537112776 -0.006338537112776
ans =

-0.008692776468285 -0.008692776468285

The results are the same, the only difference is that Laplace’s formula needs much
more operations and thus uses much more execution time that det. However, if we
replace rand by hilb, the matrices are Hilbert matrices which are ill-conditioned,
we get

for n=4:9
A=hilb(n);
[det(A) DetLaplace(A)]

end
ans =

1.0e-06 *
0.165343915343926 0.165343915343319

ans =
1.0e-11 *
0.374929513251423 0.374929513075645

ans =
1.0e-17 *
0.536729988684877 0.536730023323187

ans =
1.0e-24 *
0.483580261909806 0.483085292821939

ans =
1.0e-30 *
0.002737050274535 -0.355714248182654

ans =
1.0e-35 *
0.000000097202790 0.315086992638140

This time the results of det are much more accurate than those with Laplace’s
Expansion. Thus in summary, Laplace’s expansion is mathematically interesting
and can be implemented recursively. It is, however, computationally much more
expensive and numerically a disaster.

60 7 Recursion

7.3 Hilbert Curves

Hilbert curves are space filling curves. We follow here the derivation given in [13].
The basic elements for the construction are 4 “cups”.

a b c d

The next refinement of a is the curve a2 which is

It has been constructed by attaching a smaller d-cup to point A, the upper right of
a, then moving a step h from point B to C to the left to place a small a-cup. Then
moving down from point D to E again by a step h and placing another a-cup. Finally
moving from F to G another step h to the right and placing a b-cup. We wish to plot
the resulting Hilbert curve, so we need to plot the segments BC , DE and FG. We
thus get the function

function a(i);
global x y h;
if i>0,
d(i-1); plot([x-h,x],[y,y]); x=x-h;
a(i-1); plot([x,x],[y-h,y]); y=y-h;
a(i-1); plot([x,x+h],[y,y]); x=x+h;
b(i-1);

end

7.3 Hilbert Curves 61

The above curve is the result for i = 2. Symbolically we write for the construction

a2 : d ← a ↓ a → b

The coordinates of the current point on the curve are given by the global variables
(x, y). The current step size h is also a global variable.

Similarly we get for the d-cup starting from the upper right corner:

d2 : a ↓ d ← d ↑ c

An finally for b and c starting from the lower left corner:

b2 : c ↑ b → b ↓ a c2 : b → c ↑ c ← d

We program the 4 cases:

function a(i); function c(i);
global x y h; global x y h;
if i>0, if i>0,
d(i-1); plot([x-h,x],[y,y]); x=x-h; b(i-1); plot([x,x+h],[y,y]); x=x+h;
a(i-1); plot([x,x],[y-h,y]); y=y-h; c(i-1); plot([x,x],[y,y+h]); y=y+h;
a(i-1); plot([x,x+h],[y,y]); x=x+h; c(i-1); plot([x-h,x],[y,y]); x=x-h;
b(i-1); d(i-1);
end end

function b(i); function d(i);
global x y h; global x y h;
if i>0, if i>0,
c(i-1); plot([x,x],[y,y+h]); y=y+h; a(i-1); plot([x,x],[y-h,y]); y=y-h;
b(i-1); plot([x,x+h],[y,y]); x=x+h; d(i-1); plot([x-h,x],[y,y]); x=x-h;
b(i-1); plot([x,x],[y-h,y]); y=y-h; d(i-1); plot([x,x],[y,y+h]); y=y+h;
a(i-1); c(i-1);
end end

62 7 Recursion

Notice that these four functions are highly multiple recursive. Each one calls itself
and two of the other functions.
In the main program h1.m we need to define n and call a(n):

global x y h;
clf
axis([-600,800, -600, 800])
axis square
hold
x=600; y=600 ;
n=input(’Hilbert Curve n=?’)
h0=1024;
h=h0/2ˆn; % scaling to fill same square
a(n)

The result for n = 3 is

It is fun to watch the curve being plotted. For this we need to add the Matlab-
command drawnow while the curve is generated. We add this command to the
function a.m:

function a(i);
global x y h
if i>0,

d(i-1); plot([x-h,x],[y,y]); x=x-h;
a(i-1); plot([x,x],[y-h,y]); y=y-h;
a(i-1); plot([x,x+h],[y,y]); x=x+h;
b(i-1);
drawnow;

end

Run now the main program again for n = 6 and watch the curve being plotted!

7.4 Quicksort 63

7.4 Quicksort

Quicksort is a ingenious sorting algorithm developed by Tony Hoare using recursion.
Given a vector of numbers

a = (a1, a2, . . . , an)

we want to sort them in ascending order. We split the vector in two sets by choosing
some element in the middle:

x = a(m) where m = round((1 + n)/2)

We then get two sets which are separated by x :

{a1, . . . , am−1}, x, {am+1, . . . , an}.

Now we scan the elements of the first set and search for an element ai ≥ x . Then
we scan the elements of the second set and look for an element a j ≤ x . If we are
successful, we swap ai with a j . We continue this way until the first set contains only
numbers smaller than x and the second set only numbers larger than x . Then we
apply the same procedure recursively and independently to the two sets.

The following function Sorting generates first n random numbers and prints
them as bar plot.

function Sorting(n)
global a
format short
a=rand(1,n);
clf, bar(a), pause
quick(1,n)
a

Then it calls the recursive function quick:

function quick(left,right)
% QUICK quicksort
% quick(left,right) sorts the numbers a(left), ..., a(right) of the
% global array a in ascending order.
global a;
mid=round((left+right)/2); % choose middle element
i=left; j=right; x=a(mid); % sort a(i) ... a(j)
while i<=j
while a(i)<x, i=i+1; end % search left for a(i)>=x
while x<a(j), j=j-1; end % search right for a(j)<=x
if i<=j % swap if found
u=a(i); a(i)=a(j); a(j)=u;
i=i+1; j=j-1; % advance indices

% bar(a); pause(0.01) % to show the process
end

end
if left<j, quick(left,j) ; end % sort the two sets
if i<right,quick(i,right); end % recursively

64 7 Recursion

When two elements are swapped we plot the array a and wait 0.01 s. This allows to
visualize the quick-sort algorithm. Run the program for n = 100 and watch how the
numbers are sorted. In a parallel environment the sorting of the two subsets could be
computed independently.

7.5 MATLAB-Elements Used in This Chapter

prod: Product of array elements

If A is a vector, then prod(A) returns the product of the elements.
If A is a nonempty matrix, then prod(A) treats the columns of A as
vectors and returns a row vector of the products of each column.

factorial: Factorial of input

f = factorial(n) returns the product of all positive integers less than or
equal to n, where n is a nonnegative integer value. If n is an array, then
f contains the factorial of each value of n. The data type and size of f
is the same as that of n.

det: Matrix determinant

d = det(X) returns the determinant of the square matrix X.

rand: Uniformly distributed pseudorandom numbers

r = rand returns a pseudorandom scalar drawn from the standard uni-
form distribution on the open interval (0, 1).

hilb: Hilbert matrix

TheHilbert matrix is a notable example of a poorly conditionedmatrix.
The elements of the Hilbert matrices are H(i,j) = 1/(i + j 1).

global: Declare global variables

global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each Matlab function has its own local variables, which
are separate from those of other functions, and from those of the
base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, they all share a
single copy of that variable. Any assignment to that variable, in any
function, is available to all the functions declaring it global.

drawnow: Update figure window and execute pending callbacks drawnow causes

figure windows and their children to update. Any callbacks generated
by user actions (for example, mouse or key presses, button clicks, and
so on) are executed before drawnow returns.

7.5 Matlab-Elements Used in This Chapter 65

Use drawnow in animation loops to update the figure during function
execution and to update graphical user interfaces.

bar: Bar graph

bar(Y) draws one bar for each element in Y.

tic, toc: stopwatch timer

tic starts a stopwatch timer to measure performance. The function
records the internal time at execution of the tic command. Display
the elapsed time with the toc function.

7.6 Problems

1. Cramer’s Rule for solving systems of linear equations. This rule is often used
when solving small (n ≤ 3) systems of linear equations by hand.
Write a function x=Cramer(A,b) which solves a linear system Ax = b using
Cramer’s rule. For det(A) �= 0, the linear system has the unique solution

xi = det(Ai)

det(A)
, i = 1, 2, . . . , n, (7.2)

where Ai is the matrix obtained from A by replacing column a : i by b. Use the
function DetLaplace to compute the determinants.
Test your program by generating a linear system with known solution.

2. Selection Sort versus Quick Sort.
The idea of selection sort is to find the minimum value in the given array and then
swaps it with the value in the first position. By repeating this for the remaining
elements the array is sorted.

(a) Write a (non-recursive) function a=SelectSort(a) which implements
the Selection Sort. Show the process using bar and pause as done in Quick
Sort. Test your program by sorting some small arrays (n ≤ 100).

(b) Speed Test: Remove the bar and pause statement in both functions and
measure the time each function needs to sort an array of 100,000 elements.
Use for this the Matlab-functions tic and toc.

(c) For fun (not efficient!): program the selection sort recursively. Use a global
array and proceed similarly as with quicksort.

3. Pythagoras Tree1:
Basic construction: Given two points P and Q in the plane, construct the points
P ′ and Q′ to built a square. Then put on the square a right triangle with one basis
angle α.

1https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal).

https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal)

66 7 Recursion

The following figure shows the basic construction and the first recursion step,
where the construction is repeated on top of the cathetes of the triangle P ′ RQ′.

Write a recursive function which computes the Pythagoras tree until the base line
P Q becomes small. Experiment with the basis angle, choose e.g. as here in the
figure α = 20◦.

Chapter 8
Iteration and Nonlinear Equations

8.1 Bisection

Consider the following problem: We are given the area F = 12 of a right-angled
triangle and the section p = 2 of the hypotenuse (see Fig. 8.1). Compute the edges
of the triangle.

Denote with q the second section of the hypotenuse so that c = p + q. The height
theorem says h2

c = pq. Replacing c and hc in the expression for the area F = 1
2chc

we get

F = p + q

2
√

pq

which is an interesting relation since it says that the area of the triangle is equal
to the product of the arithmetic and the geometric mean of the two sections of the
hypotenuse. Inserting the numerical values we get an equation for x = q:

f (x) = 2 + x

2

√
2x − 12 = 0.

Fig. 8.1 Triangle problem

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_8

67

68 8 Iteration and Nonlinear Equations

We wish to find a value x such that f (x) = 0. It is easy to see that f (0) = −12 and
f (8) = 8, so we conclude, since f is a continuous function in (0, 8), that there exists
a zero in this interval.

It is obvious to try the mid-point of the interval x = 0+8
2 = 4. We obtain f (4) =

3
√
8 − 12 = −3.5147 and conclude that our solution must be in the smaller interval

(4, 8). Another bisection x = 4+8
2 = 6 gives f (6) = 1.8564 thus the solution must

be in the interval (4, 6). We can continue this process called bisection until the two
bounds are close enough to give us the solution to the precision we wish to have.

The following function Bisekt can be used for this:

function x=Bisekt(f,a,b)
x=(a+b)/2;
while b-a>1e-5
if f(x)<0,

a=x;
else

b=x;
end
x=(a+b)/2

end

Indeed we get the solution with

>> x=Bisekt(@(x)(2+x)/2*sqrt(2*x)-12,4,6)
x =

5.3423

Note that the function Bisekt must be improved to serve as a more general root-
finder. We will do that in Problem1.

8.2 Newton’s Method

Let s be a simple zero of the function f . We want to compute s by approximating f by
a simpler function h(x) near s. The solution x1 of h(x) = 0 is then an approximation
of s. Newton’s method approximates f by the Taylor-polynomial of degree one at x0
in the neighborhood of s

h(x) = f (x0) + f ′(x0)(x − x0).

The solution of h(x) = 0 is

x1 = x0 − f (x0)

f ′(x0)
.

This is called a Newton iteration step. Repeating the computation generates a
sequence {xk} which usually converges to the solution s.

8.2 Newton’s Method 69

8.2.1 Algorithm of Heron

As example consider the function f (x) = x2 − a, where a > 0. The positive solution
of f (x) = 0 is s = √

a. Applying Newton’s method we get the iteration

xk+1 = xk − f (xk)

f ′(xk)
= xk − x2k − a

2xk
= 1

2

(

xk + a

xk

)

.

The sequence generated by this iteration is amethod to compute the square-root using
only the four basic operations. It is known as the Algorithm of Heron. In Problem7
a careful implementation is discussed.

8.2.2 Fractal

Consider the function f (z) = z3 − 1. It has the three roots, one is real the other two
are complex:

z1 = 1, z2 = −1

2
+

√
3

2
i, z3 = −1

2
−

√
3

2
i.

Using Newton’s iteration

zk+1 = zk − z3k − 1

3z2k

and complex arithmetic, the sequence {zk}will converge to one of the roots depending
of the starting value z0. It is interesting to determine which starting point leads to
which root. The set of initial values that lead to convergence to the same root is
called the basin of attraction of that root. As we will see the basins of attraction of
the roots have a very complicated structure, and similarly for their boundaries: they
are fractal.

We consider the region in the complex plane {z = x + iy | − 1 ≤ x, y ≤ 1}. We
will choose 1,000 points in each direction as starting values for Newton’s iteration.
Thus amillion pointswill be used. In the following program scriptwemake use of two
features of Matlab: vector-operations and meshgrid. The points are generated
with the function meshgrid and stored as complex numbers in the matrix Z. The
iteration is performed in parallel with the whole matrix Z.

clf,clc,clear
n=1000; m=30;
x=-1:2/n:1;
[X,Y]=meshgrid(x,x);
Z=X+1i*Y; % define grid for picture
for i=1:m % perform m iterations in parallel
Z=Z-(Z.ˆ3-1)./(3*Z.ˆ2); % for all million points

end; % if converged then

70 8 Iteration and Nonlinear Equations

% each element of Z contains one root
a=20; % transform roots to pos. integer values
image((round(imag(Z))+2)*a); % multiply by a to get nice colors

After m = 30 iterations each element of the matrix Z has converged to one of the
roots. To interpret Z as an image, we need to transform the elements to real numbers.
We can distinguish the three different elements by looking at their imaginary part
which is 0,

√
3
2 , or −

√
3
2 . By rounding and adding 2 we get the numbers 2, 3, and 1.

Now to choose nice colors we multiply them by a factor a. For a = 20 we obtain the
picture

8.3 Circular Billiard

We consider a circular billiard table and two balls located at the points P and Q,
see Fig. 8.2. In which direction must the ball at point P be hit, if it is to bounce off
the boundary of the table exactly once and then hit the other ball located at Q?

Fig. 8.2 Billiard table

8.3 Circular Billiard 71

Fig. 8.3 Billiard problem

The problem does not depend on the size of the circle. Therefore, without loss of
generality, we may assume the radius of the table to be 1, i.e., we will consider the
unit circle. Also, the problem remains the same if we rotate the table. Thus, we may
assume that one ball (e.g. Q) is located on the x-axis.

The problem can now be stated as follows: In the unit circle, two arbitrary points
P = (px, py) and Q = (a, 0) are given. We are looking for a reflection point X =
(cos x, sin x) (see Fig. 8.3) on the circumference of the circle, such that a billiard ball
traveling from P to X will hit Q after it bounces off the edge. The problem is solved
if we know the point X, which means that we are looking for the angle x.

The condition that must be satisfied is that the two reflection angles are equal, i.e.,
α1 = α2 in Fig. 8.3. This is the case if the point X is the bisector of the angle QXP.
Thus if, eXQ is the unit vector in the direction XQ, and if eXP is defined similarly,
then the direction of the bisector is given by the sum eXQ + eXP. This vector must be
orthogonal to the direction vector of the tangent g,

r =
(

sin x

− cos x

)

.

Therefore we obtain for the angle x the equation

f (x) = (eXQ + eXP)
�r = 0. (8.1)

72 8 Iteration and Nonlinear Equations

Let us program now the function f (x) which we will call billiard(x).

function y=billiard(x)
% computes the billiard function f
global px py a
c=cos(x); s=sin(x);
X=[c;s]; P=[px;py];
XP=P-X; Ep=XP/norm(XP); % unit vector direction XP
XQ=[a-c; -s]; Eq=XQ/norm(XQ); % unit vector direction XQ
r=[s;-c]; % tangent direction vector
y=(Ep+Eq)’*r;

As an example we plot the function for the following ball positions

P = (0.6, 0.3), Q = (−0.2, 0)

% PlotBilliardFct.m
clear,clc,clf
global px py a
px=0.6,py=0.3,a=-0.2
F=[];
X=0:0.01:2*pi;
for x=X
F=[F,billiard(x)];

end
plot(X,F,[0,2*pi],[0,0])

From this plot we see that there are two solutions for angles: one in the interval (0, 1)
and the other one in (4, 5). Using bisection we get

8.3 Circular Billiard 73

>> [x1,y]=Bisection(@billiard,0,1)
x =

0.504063160498908
y =

2.220446049250313e-16
>> [x2,y]=Bisection(@billiard,4,5)
x =

4.050212021055064
y =

-2.220446049250313e-16

the reflection points

format short
>> X1=[cos(x1),sin(x1)] % first Reflection point
X1 =

0.8756 0.4830
>> X2=[cos(x2),sin(x2)] % second Reflection point
X2 =

-0.6148 -0.7887

Now we would like to plot the trajectories:

% BilliardExample2.m
clf
axis equal, hold
t=0:0.01:2*pi; % plot circle
plot(cos(t),sin(t))
plot(px,py,’o’) % plot point P
text(px,py,’ P’)
plot(a,0,’o’) % plot point Q
text(a,0,’ Q’)
P=[px,py]; Q=[a,0];
plot(X1(1),X1(2),’o’)
text(X1(1),X1(2),’ X_1’)
plot([Q(1),X1(1)], [Q(2),X1(2)]) % plot trajectory
plot([X1(1),P(1)], [X1(2),P(2)])
plot(X2(1),X2(2),’o’)
text(X2(1),X2(2),’ X_2’)
plot([Q(1),X2(1)], [Q(2),X2(2)]) % plot trajectory
plot([X2(1),P(1)], [X2(2),P(2)])

74 8 Iteration and Nonlinear Equations

8.4 MATLAB-Elements Used in This Chapter

meshgrid: Rectangular grid in 2-D and 3-D space
[X,Y] = meshgrid(xgv,ygv) replicates the grid vectors xgv and ygv to
produce a full grid. This grid is represented by the output coordinate
arrays X and Y. The output coordinate arrays X and Y contain copies of
the grid vectors xgv and ygv respectively. The sizes of the output arrays
are determined by the length of the grid vectors. For grid vectors xgv
and ygv of length M and N respectively, X and Y will have N rows and
M columns.

imag: Imaginary part of complex number
imag(z) returns the imaginary part of z.
imag(A) returns the imaginary part of each element of A.

image: Display image object
image creates an image graphics object by interpreting each element
in a matrix as an index into the figure’s colormap or directly as RGB
values, depending on the data specified.

text: Create text object in current axes
text is the low-level function for creating text graphics objects. Use text
to place character strings at specified locations.
text(x,y,‘string’) adds the string in quotes to the location specified by
the point (x,y) x and y must be numbers of class double.

8.5 Problems 75

8.5 Problems

1. Bisection-Algorithm. Improve the function Bisekt. Your function [x,y]=
Bisection(f,a,b,tol) should also compute a zero for functions with
f (a) > 0 and f (b) < 0 to a given tolerance tol. Be careful to stop the iteration
in case the user asks for a too small tolerance! If by the bisection process we
arrive at an interval (a, b) which does not contain a machine number anymore
then it is high time to stop the iteration.

2. Solve with bisection the equations

(a) xx = 50 (b) ln(x) = cos(x) (c) x + ex = 0.

Hint: a starting interval is easy to find by sketching the functions involved.
3. Find x such that

x
∫

0

e−t2dt = 0.5.

Hint: the integral cannot be evaluated analytically, so expand it in a series and
integrate. Write a function f(x) to evaluate the series. Then use bisection to
compute the solution of f (x) − 0.5 = 0.

4. Use bisection to create the following table:

F 0 0.1π 0.2π … π
h 0 ? ? … 2

where the function F(h) is given by

F(h) = π − 2 arccos
h

2
+ h

√

1 −
(

h

2

)2

.

5. Binary search: we are given an ordered sequence of numbers:

x1 ≤ x2 ≤ · · · ≤ xn

and a new number z. Write a program that computes an index value i such that
either xi−1 < z ≤ xi or i = 1 or i = n + 1 holds. The problem can be solved by
considering the function

f (i) = xi − z

and computing its “zero” by bisection.

76 8 Iteration and Nonlinear Equations

6. Compute x where the following maximum is attained:

max
0<x< π

2

(

1

4 sin x
+ sin x

2x
− cos x

4x

)

.

7. Write a function s=SquareRoot(a) which computes the square root using
Heron’s algorithm. Think of a good starting value and a good termination crite-
rion.
Hint: consider the geometrical interpretation of Newton’s method and use the
(theoretical) monotonicity of the sequence as termination criterion.
Test your function and compare the results with the standard Matlab-function
sqrt. Compute the relative error of both functions.

8. We consider again Problem3: find x such that

f (x) =
∫ x

0
e−t2dt − 0.5 = 0.

Since a function evaluation is expensive (summation of the Taylor series) but the
derivatives are cheap to compute, a higher order method is appropriate. Solve
this equation with Newton’s method.

9. Using Newton’s iteration, find a such that
∫ 1

0
eatdt = 2.

10. Consider the billiard-problem. Let the ball P be at position P = (0.5, 0.5) and
let Q move in small steps (say 0.1) from 1 to −1.
Compute for each position the solutions using bisection. Count and plot the
solutions and plot also the function billiard. make a pause before moving
on the the next position of Q.

11. Modify the fractal program by replacing f (z) = z3 − 1 with the function

f (z) = z5 − 1.

(a) Compute the 5 zeros of f using the command roots.
(b) In order two distinguish the 5 different numbers, study the imaginary parts

of the 5 zeros. Invent a transformation such that the zeros are replaced by 5
different positive integer numbers.

12. Mandelbrot set1: Consider the iteration

Zk+1 = Z2
k + C.

Depending on the value of the constant C the sequence {Zk} will either diverge
to ±∞ or converge.

1This problem is nicely solved and discussed in [8].

8.5 Problems 77

Let C now be in the region in the complex plane Z = X + iY with −2 ≤
X,Y ≤ 2.
Perform 50 iterations starting always with Z0 = 0 with all numbers C in that
region and plot using image the resulting Mandelbrot set, which is the set of
all values C for which the iterations converges to a finite limit.

Chapter 9
Simulation

9.1 Event Simulation Using Random Numbers

In this sectionwe investigate experimental—and theoretical probabilities. The exper-
imental probability is the quotient of the number of times the event occurs divided by
the total number of trials. The theoretical probability on the other hand is the number
of favorable outcomes divided by the total number of possible outcomes.

The following example can be solved analytically and by simulation. Consider
the following experiment: we are tossing a coin n = 10 times. Since for a fair coin
the theoretical probability for head or tail is 1/2 we expect in our experiment that
k ≈ 5 times head to appear. In fact by calling the function toss a few times we
obtain what we expect:

function k=toss(n)
k=sum(rand(1,n)<=0.5);

>> k=toss(10)
k = 5
>> k=toss(10)
k = 6
>> k=toss(10)
k = 5
>> k=toss(10)
k = 4
>> k=toss(10)
k = 7
>> k=toss(10)
k = 5
>> k=toss(10)
k = 6

It is interesting to repeat the experiment, say m = 100 times and to make a histogram
of the numbers k obtained (see Fig. 9.1).

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_9

79

80 9 Simulation

Fig. 9.1 Histogram

% khist1.m
% Flipping a coin, histogram
clear, clf
format compact
m=100
n=10
a=zeros(1,n); % array for histogram
z=0;
for p=1:m
k=toss(n);

if k==0 % exception because Matlab
z=z+1; % does not allow to use a(0)

else
a(k)=a(k)+1; % update array a

end
end
axis([0,n,0,max(a)+n])
hold
bar([0:n],[z,a])

Since Matlab does not a allows zero indices we treat zero as a special case.
Let us now compute the theoretical probability. The number of ways to get k heads

in n flips is given by the binomial coefficient (“n choose k”):

(

n

k

)

.

For the theoretical probability we have to divide by the total number of possible
outcomes which is

(n
k

)

∑n
j=0

(n
j

) =
(n

k

)

2n
.

9.1 Event Simulation Using Random Numbers 81

Notice that the sum
∑n

j=0

(n
j

) = (1 + 1)n = 2n .
To compute this we first need the function

function b=binomial(n,k)
b=1;
for j=1:k
b=b*(n+1-j)/j;

end

Then the theoretical probablity is computed by the statements

for k=0:n
if k==0

z=binomial(n,k);
else
f(k)=binomial(n,k); % theoretical probability
end

end
f=f/2ˆn;z=z/2ˆn; % probability
z=z*m; f=f*m; % scaled by m
plot([0:n],[z,f],’or’,’LineWidth’,2)

This function is shown using red circles in Fig. 9.1, it has a “bell shape” which is
known as normal distribution.

By increasing m, the histogram and the theoretical probability of a given number
of heads becomes smoother and approaches as limit the normal distribution:

1√
2πσ

exp

(

− (k − μ)2

2σ2

)

where μ = n/2 is the mean and σ the standard deviation, a measure of the breadth
of the curve width. We program this normal distribution function as

function y=bell(x,mu,sigma)
y=1/sqrt(2*pi)/sigma*exp(-(x-mu).ˆ2/2/sigmaˆ2);

For equal probability coin flipping we have σ = √
μ/2 = √

n/4. For n = 10 and
m = 100 we get with

% khist2.m
figure(2)
axis([0,n,0,max(a)+n])
hold
plot([0:n],[z,f],’or’,’LineWidth’,2)
sigma=sqrt(n/4)
mu=n/2
x=linspace(0,n);
plot(x,bell(x,mu,sigma)*m,’LineWidth’,2)

Figure 9.2 which shows already a very good match between the discrete distribution
and the continuous asymptotic normal distribution.

Consider now a larger simulation with n = 100 and m = 10′000. We get with

82 9 Simulation

Fig. 9.2 Discrete and
normal distribution

% khist.m
clear, clf
format compact
m=10000
n=100
a=zeros(1,n); % array for histogram
z=0;
for p=1:m
k=toss(n);

if k==0 % Matlab allows no a(0)
z=z+1;

else
a(k)=a(k)+1; % update array a

end
end
axis([0,n,0,max(a)+n])
hold
bar([0:n],[z,a])
sigmaT=sqrt(n/4)
meanT=n/2
x=linspace(0,n);
plot(x,bell(x,meanT,sigmaT)*m,’r’,’LineWidth’,2)

m =
10000

n =
100

Current plot held
sigmaT = 5
meanT = 50

We notice first from Fig. 9.3 that the histogram matches very well the normal distri-
bution and that it is rare that k < 40 or k > 60. In fact summing up 95% of all cases
around k = 50 we get

9.1 Event Simulation Using Random Numbers 83

Fig. 9.3 Khist

s=a(n/2);
p=0;
while s<=m*95/100
p=p+1;
s=s+a(n/2-p)+a(n/2+p);

end
p

p = 10

which means that only in 5% of all cases k was outside the interval (40, 60) which
is the interval meanT ± 2× sigmaT.

If we do not know the theoretical mean and the standard deviation then for our
histogram these two quantities can be estimated by

μ = 1

n

n
∑

i=1

ai xi , σ =
√

√

√

√

1

n

n
∑

i=1

ai (xi − μ)2.

For our example we obtain

meanEx= sum(a.*[1:n])/m
deviations=[1:n]-meanEx;
variance=sum(a.*deviations.ˆ2)/m
sigmaEx=sqrt(variance)

meanEx =
49.9325

variance =
25.2867

sigmaEx =
5.0286

which compares very well with the theoretical quantities.

84 9 Simulation

9.2 Exhaustive Search

Exhaustive search is a problem solving technique to find an optimum in some finite
space by enumerating and inspecting all possible states.

These types of algorithms are of limited use since enumerating all permutations
of n objects means inspecting a matrix with n! rows and n columns. The Matlab-
function perms computes all permutations of n objects. In the description of this
function we find the warning:

This function is only practical for situations where N is less than about 10 (for N=11, the
output takes over 3 gigabytes).

It would be better not to generate and store all permutations at once but produce and
use each permutation sequentially.

On the other hand, our computers have become very powerful regarding process-
ing time and memory. So for small but nevertheless interesting problems exhaustive
search can be a valuable technique.

As an example we consider the traveling salesman problem: Given a set of cities
and the distances between each pair of cities, the problem consists in finding the
shortest route which starts from a city and visits each city exactly once and finally
returns to the starting city. This problem is one of the so called “hard problems”
in the sense that there exists no algorithm which solves the problem in polynomial
time. The number of algorithms to solve this problem approximately is large and
there exist a considerable literature on this topic. In the following we shall solve the
problem for a small number of cities with “brute force”.
Consider the following distance table of some cities in Switzerland:

1 2 3 4 5 6 7 8 9
1 Langenthal 0 107 47 55 37 61 50 24 80
2 Brienz 0 77 53 117 147 115 109 83
3 Bern 0 112 85 97 42 73 136
4 Luzern 0 65 96 105 57 31
5 Aarau 0 53 77 14 71
6 Basel 0 90 46 108
7 Biel 0 66 129
8 Olten 0 78
9 Zug 0

The approximate distances (in km) were taken from Google Maps. We copy this
distance table in a matrix and augment it to a symmetric Matrix

A =
0 107 47 55 37 61 50 24 80

107 0 77 53 117 147 115 109 83
47 77 0 112 85 97 42 73 136
55 53 112 0 65 96 105 57 31
37 117 85 65 0 53 77 14 71
61 147 97 96 53 0 90 46 108

9.2 Exhaustive Search 85

50 115 42 105 77 90 0 66 129
24 109 73 57 14 46 66 0 78
80 83 136 31 71 108 129 78 0

To solve the traveling salesman problem for this set of cities, we first choose a start
city. Assume we start with number 1 (Langenthal). Then we have to generate all
permutations of the cities 2–9 (Brienz–Zug) and for each permutations add up the
distances from Langenthal and back again to Langenthal. One route would then be
described for instance by the numbers

1 → 4 → 5 → 8 → 6 → 9 → 3 → 2 → 7 → 1

and for the costs of this route (the sum of all km) we need to add the matrix elements

A(1, 4) + A(4, 5) + A(5, 8) + A(8, 6) + A(6, 9) + A(9, 3) + A(3, 2) + A(2, 7) + A(7, 1)

which sum up to 666.
The function TravelSalesman is now not difficult to understand

function [solution,minimum]=TravelSalesman(A,startCity)
% Trvelsalesman solves the traveling salesman problem
% The matrix A contains the distance table of cities. startCity is
% the Number of city where the salesman starts and returns uses
% Matlab’s perms

[m,n]=size(A);
if m˜=n,

error(’distance table is wrong’)
end
if startCity>n

error(’Startcity not in the list’)
end
c=[]; % eliminate startCity from
for k=1:n % the list of cities
if k˜=startCity

c=[c, k];
end

end
T=perms(c); % compute table T of all permutations
[m,p]=size(T) % add startCity as first and last city
T=[ones(m,1)*startCity T ones(m,1)*startCity];
minimum=inf;
for k=1:m % for all permutations
cost=0;
for j=1:p+1 % compute the the cost

cost=cost+A(T(k,j),T(k,j+1));
end
if cost<minimum % save the minimum cost

minimum=cost;
solution=T(k,:); % and the route

end
end

86 9 Simulation

Fig. 9.4 Traveling salesman

The following main program calls TravelSalesman and also plots the cities
as points and the solution route, see Fig. 9.4.

% MainSales.m
% Main program for travelling salesman
A=[0 107 47 55 37 61 50 24 80 % distance matrix

0 0 77 53 117 147 115 109 83
0 0 0 112 85 97 42 73 136
0 0 0 0 65 96 105 57 31
0 0 0 0 0 53 77 14 71
0 0 0 0 0 0 90 46 108
0 0 0 0 0 0 0 66 129
0 0 0 0 0 0 0 0 78
0 0 0 0 0 0 0 0 0];

A=A+A’; % augment to sym. Matrix
clf
axis([0,10,0,10])
axis equal
hold
X=[3.2, 4.4 % cities as points on a map

4.5, 0.9
1.5, 2.4
6.1, 2.9
4.9, 5.9
2.4, 7.3
0.4, 3.8
4.0, 5.6
7.3, 4.1];

plot(X(:,1),X(:,2),’o’)
n=9
for k=1:n
text(X(k,1),X(k,2),[’ ’,num2str(k)])

end
[solution,minimum]=TravelSalesman(A,1)
plot(X(solution,1),X(solution,2))

9.2 Exhaustive Search 87

>> MainSales
Current plot held
m =

40320
p =

8
solution =

1 7 3 2 4 9 5 8 6 1
minimum =

445

Starting with another city, e.g. with 2 (Brienz) yields the same result

>> [solution,minimum]=TravelSalesman(A,2)
m =

40320
p =

8
solution =

2 4 9 5 8 6 1 7 3 2
minimum =

445

which can be expected since there is exactly one optimal route.

9.3 Differential Equations

Weshall consider in this section ordinary differential equations (ODEs). The solution
of a differential equation is a function. Consider as example the equation

y′(x) = 2 y(x).

We can guess that the solution is a exponential function since for this equation the
derivative is a multiple of the function itself:

y(x) = e2x =⇒ y′(x) = 2 e2x = 2 y(x).

But also z(x) = ay(x)with some arbitrary constant a is a solution. The equation has
many solutions. To pick a specific solution we need to prescribe initial conditions.
So if we consider the problem

y′(x) = 2 y(x), y(0) = 3

then the only solution is y(x) = 3e2x .
Differential equations have often solutions which cannot be represented by alge-

braic expressions. It is therefore necessary to consider numerical methods which
compute approximations of the solutions.

88 9 Simulation

A curve in the plane is best described in parametric form. For instancewe describe
an ellipse with semi-axes a and b by

x(t) = a cos(t), y(t) = b sin(t), 0 ≤ t ≤ 2π.

When we look for a curve in the plane, the differential equation is a system of two
equations for the functions x(t) and y(t).

The following system of differential equationswith the initial conditions x(0) = 2
and y(0) = 0 has as solution an ellipse

x ′(t) = −2y(t)

y′(t) = x(t)

2
.

We can verify this with the ansatz x(t) = a cos(t) and y(t) = b sin(t). It follows

x ′ = −a sin t = −2b sin t =⇒ a = 2b

y′ = b cos t = 1

2
a cos t =⇒ b = 1

2
a.

Using the initial condition x(0) = 2weget a = 2 and therefore b = 1. So the solution
of the system is the ellipse

x(t) = 2 cos(t)

y(t) = sin(t).

9.3.1 Numerical Integrator ode45

Matlab provides many numerical integrators adapted for different types of ODEs
(see doc ode45). A classic one if them isode45 an implementation of the explicit
Runge–Kutta (4,5) pair of Dormand and Prince. It integrates the ODEwith automatic
step-size control that is it adapts the step-size such that the truncation error is kept
constant.

In order to use a numerical integrator, the differential equationmust be formulated
in standard form as a first order system of differential equations

y′ = f (t, y), with initial condition y(t0) = y0.

Example:

y′′′ + 5t y′′ + y = e−t , y(0) = 10, y′(0) = 0, y′′(0) = −0.1.

9.3 Differential Equations 89

This third order differential equation is transformed to a first order system by intro-
ducing new variables z1(t) = y(t), z2(t) = y′(t) and z3(t) = y′′(t). Then by differ-
entiating and replacing the y we get the system

z′
1 = y′ = z2

z′
2 = y′′ = z3

z′
3 = y′′′ = −5t y′′ − y + e−t = −5t z3 − z1 + e−t

which written in matrix-vector notation is

z′ = Az + b A =
⎛

⎝

0 1 0
0 0 1

−1 0 −5t

⎞

⎠ , b =
⎛

⎝

0
0

e−t

⎞

⎠ .

The initial conditions for this system are z(0) = [10, 0,−0.1]�.
The Matlab function ode45 can be used to solve such a first order system of

ODEs. We need to define the system as a function odefun. For a scalar t and a
vector y, odefun(t,y) must return a column vector corresponding to f (t, y).
Then the ODE is integrated with

[tout,yout] = ode45(odefun,tspan,y0)

where tspan indicates the interval for which the functions should be computed, so
for instance we could have tspan=[0,10]. The third parameter y0 contains the
values of the initial conditions. The output parameters are [tout,yout]. Each
row in the solution array yout corresponds to the function values z1, . . . , zn at a
time returned in the column vector tout.

For our example we first program the function

function dz=fsystem(t,z)
A=[0 1 0

0 0 1
-1 0 -5*t];

b=[0 0 exp(-t)]’;
dz=A*z+b;

The main program is then

% Example for ode45
t=0; y0=[10 0 -0.1]’;
[tt,yy]=ode45(@fsystem,[0,5],y0)
plot(tt,yy)

It produces a table of results and a plot of the functions z1(t) = y(t) (blue color),
z2(t) = y′(t) (green color) and z3(t) = y′′(t) (red color), see Fig. 9.5.

90 9 Simulation

Fig. 9.5 Third order ODE

9.3.2 Dog Attacking a Jogger

This example is taken from [4]. We consider the following problem: while a jogger
is running on some trail in the plane, he is being attacked by a dog. Compute the
orbit x(t), y(t) of the dog.

We assume that the dog is running full speedwith constant velocityw. His velocity
vector points at every time to its goal, the jogger. We assume that the motion of the
jogger is described by the two functions X (t) and Y (t). The following equations
hold:

1. ẋ2 + ẏ2 = w2: The dog is running with constant speed.
2. The velocity vector of the dog is parallel to the difference vector between the

position of the jogger and the dog:

(

ẋ

ẏ

)

= λ

(

X − x

Y − y

)

with λ > 0.

If we substitute this in the first equation we obtain

w2 = ẋ2 + ẏ2 = λ2

∣

∣

∣

∣

∣

∣

∣

∣

(

X − x

Y − y

)∣

∣

∣

∣

∣

∣

∣

∣

2

.

This equation can be solved for λ:

λ = w
∣

∣

∣

∣

∣

∣

(X−x
Y−y

)
∣

∣

∣

∣

∣

∣

> 0.

9.3 Differential Equations 91

Finally, substitution of this expression for λ in the second equation yields the differ-
ential equation of the orbit of the dog:

(

ẋ

ẏ

)

= w
∣

∣

∣

∣

∣

∣

(X−x
Y−y

)
∣

∣

∣

∣

∣

∣

(

X − x

Y − y

)

. (9.1)

To solve this system we need to program several functions. First the trail of the
jogger. We let him run on the x-axis:

function s=jogger1(t);
s=[8*t; 0];

Next we program the ODE for the dog:

function dz=dog1(t,z)
global w
X=jogger1(t);
h=X-z;
nh=norm(h);
dz=w/nh*h;

The main program then becomes

% mainDog1
global w
y0=[60;70]; % starting point of the dog
w=10; % w speed of the dog
[t,Y]=ode45(@dog1,[0,10],y0)
clf; hold on;
axis([-10,100,-10,70]);
plot(Y(:,1),Y(:,2));
J=[]; % recompute the trail of the
for k=1:length(t), % jogger for the same points
w=jogger1(t(k)); % in time as used for the dog
J=[J; w’];

end;
plot(J(:,1), J(:,2),’r’);

To plot the trail of the jogger we recompute it using the same points in time as were
used for the dog’s orbit. This will be also useful for showing the movements (see
below).We get the following result, see Fig. 9.6. Since the dog is running faster (with
speed 10) than the jogger (with speed 8), by integrating a little longer the dog should
catch the jogger. However, the system (9.1) has a singularity when the dog reaches
the jogger: the norm of the difference vector becomes zero and we should stop the
integration, since also the numerical integrator gets in trouble.

We do not know the exact time when this happens, so we should stop integrating
when the dog is near the jogger. For such situationsMatlab provides the possibility
to define another termination criterion for the integration, different from a given
upper bound for the independent variable. It is possible to terminate the integration
by checking zero crossings of a function.

92 9 Simulation

Fig. 9.6 Dog orbit (blue),
jogger trail (red)

To do so we need to add in the main programm a call to the function odesets

options= odeset(’events’,’on’)

to triggerMatlab to observe events. The paramenter options has to be passed to
ode45 as additional input parameter:

[t,Y]=ode45(’dog2’,[0,30],y0,options)

Furthermore the function describing the dog’s movement has to be adapted, we
would like to terminate integration when

∣

∣

∣

∣(X − x,Y − y)�
∣

∣

∣

∣ becomes small. In
order to do so we have to add a third input and two more output parameters to the
function describing the dog.

function [dz,isterminal,direction]=dog2(t,z,flag);
%
global w % w = speed of the dog
X=jogger1(t);
h=X-z;
nh=norm(h);
if nargin<3|isempty(flag) % normal output
dz=(w/nh)*h;

else
switch(flag)

case ’events’ % at norm(h)=0 there is a singularity
dz= nh-1e-3; % zero crossing at pos_dog=pos_jogger
isterminal= 1; % this is a stopping event
direction= 0; % don’t care if decrease or increase

otherwise
error([’Unknown flag: ’ flag]);

end
end

The integrator ode45 calls the function in two ways: The first one consists of
dropping the third parameter. The function then returns only the parameter dz:
the speed of the dog. In the second way the keyword ’events’ is assigned to the

9.3 Differential Equations 93

parameter flag. This keyword tells the function to return the zero-crossing function
in the first output dz. The second output isterminal is a logical vector that tells
the integrator, which components of the first output force the procedure to stop when
they become zero. Every component with this property is marked with a nonzero
entry in isterminal. The third output parameter direction is also a vector
that indicates for each component of dz if zero crossings shall only be regarded for
increasing values (direction = 1), decreasing values (direction = -1) or
in both cases (direction = 0). The condition for zero crossings is checked in
the integrator. The main program becomes

% mainDog2
global w
y0=[60;70]; % starting point of the dog
w=10; % w speed of the dog
options=odeset(’Events’,’on’)
[t,Y]=ode45(’dog2’,[0,10],y0,options)
clf; hold on;
axis([-10,120,-10,80]);
plot(Y(:,1),Y(:,2));
J=[];
for k=1:length(t),
w=jogger1(t(k));
J=[J; w’];

end;
plot(J(:,1), J(:,2),’*r’);

and we get the Fig. 9.7.
I would be nice to show the movement dynamically. For this we plot for each

time interval piecewise the orbit of the dog and the trail of the jogger. In order to not
delay the plotting we have to include the command drawnow in the loop. We also
include a pause-statement to slow down the computation, so that the movements
become nicely visible. Thus the program becomes

Fig. 9.7 Integrating till dog
reaches the jogger

94 9 Simulation

% mainDog3
global w
y0=[60;70]; % starting point of the dog
w=10; % w speed of the dog
options=odeset(’Events’,’on’)
[t,Y]=ode45(’dog2’,[0,10],y0,options)
clf; hold on;
axis([-10,120,-10,80]);
J=[];
for k=1:length(t),
w=jogger1(t(k));
J=[J; w’];

end;
title (’Dog Attacking Jogger’);
for h=1:length(t)-1,
plot ([Y(h,1),Y(h+1,1)],[Y(h,2),Y(h+1,2)]);
plot ([J(h,1),J(h+1,1)],[J(h,2),J(h+1,2)],’r’)
drawnow;
pause(0.05);

end
hold off;

9.4 MATLAB-Elements Used in This Chapter

sum: Sum of array elements

If A is a vector, then sum(A) returns the sum of the elements.
If A is a matrix, then sum(A) returns a row vector containing the sum of
each column.

perms: All possible permutation

P = perms(v) returns a matrix containing all permutations of the elements
of vector v in reverse lexicographic order. Each row of P contains a dif-
ferent permutation of the n elements in v. Matrix P has the same data type
as v, and it has n! rows and n columns.

ode45: Solve nonstiff differential equations; medium order method

[T,Y] = ode45(odefun,tspan,y0)
odefun: A function handle that evaluates the right side of the differential
equations y’ = f(t,y)
tspan: A vector specifying the interval of integration, [t0,tf]. ode45
imposes the initial conditions at tspan(1), and integrates from tspan(1)
to tspan(end). To obtain solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,…,tf].
y0: A vector of initial conditions.
[T,Y] = solver(odefun,tspan,y0,options)

9.4 Matlab-Elements Used in This Chapter 95

options: Structure of optional parameters that change the default integra-
tion properties. This is the fourth input argument.
You can create options using the odeset function. See odeset for details.

odeset: Create or alter options structure for ordinary differential equation solvers

options = odeset(’name1’,value1,’name2’,value2,…) creates an options
structure that you can pass as an argument to the ode45 solver. In the
resulting structure, options, the namedproperties have the specified values.
For example, ’name1’ has the value value1. Any unspecified properties
have default values. It is sufficient to type only the leading characters that
uniquely identify a property name. Case is ignored for property names.

9.5 Problems

1. Waiting for the elevator.We consider a buildingwith n floors. A elevator is serving
these floors andwe are interested to know the distribution of thewaiting time from
pressing the elevator button till the elevator opens the door.
Assume the time unit for the moving of the elevator one floor is one. We make
m experiments in which the elevator is randomly located on one floor and the
person is also coming randomly on one floor. The difference of the two floors is
proportional to the time the elevator needs to come.
Performm = 10′000 experiments for a n = 50 floors building. Construct and plot
the histogram of the waiting times.

2. Given a set of points in the unit square. Write a program which computes and
plots the two closest points.

(a) Write a function[P,Q,minimum]=ClosestPoints(x,y)which com-
putes all the distances between two points and stores the minimal distance
and the two points P and Q which are closest.

(b) Generate n points (xk, yk) using the function rand. Then call the function
ClosestPoints, plot the points and mark the two closest points by col-
oring them differently.

3. Shortest distance between two point sets:

(a) Consider the circle with center (5, 6) and radius r = 2 and the ellipse with
center at origin and a = 1 and b = 0.5 parallel to the coordinate axis.
Sample points on the ellipse and on the circle. Compute by brute force a point
P on the circle and a point Q on the ellipse with minimal distance.

(b) The circle with center (5, 6) and radius r = 2 and the ellipse with center
(4, 4), a = 2 and b = 3 intersect. Try to compute the intersection points by
brute force.

96 9 Simulation

4. Knapsack Problem: given a bag with a given maximum load limit W . Put in that
bag items from the following table in order to maximize the sum of the value of
the items but not exceeding the total weight W :

item 1 2 3 4 5 6 7
weights 3.3 4.6 1.7 5.8 7.7 3.1 5.3
values 7 9 5 12 14 6 12

Write a brute force program that solves the problem for a collections of bags:

W = [8, 10, 11, 15, 20, 21, 25, 26, 30, 32]

5. A dog would like to cross a river of width b. He starts at point (b, 0) with the
goal to swim to (0, 0) where he has detected a sausage. His swim velocity vD

is constant and his nose points always to the sausage. The river flows north in
direction of the y-axis and velocity of the flow of the river vR is everywhere
constant.

(a) Develop the differential equation describing the orbit z(t) = (x(t), y(t))� of
the dog.

(b) Program a Matlab function zp=dog(t,z) which describes the differen-
tial equation. The velocities vD and vR may be declared as global variables.

(c) Use the program quiver and plot the slope field for b = 1, vR = 1 and the
following three cases for the dog velocity vD = 0.8, 1.0 and 1.5.
Note: quiver(X,Y,Xp,Yp) needs 4 matrices. X and Y contain the coor-
dinates of the points and Xp and Yp the two components of the velocity at
that point. To compute these you can use the function dog e.g.

z=dog(0,[X(k,j),Y(k,j)]);Xp(k,j)=z(1);Yp(k,j)=z(2);

(d) Develop a Matlab integrator for the method of Heun of order 2

function Z= OdeHeun(f,z0,tend,n)
% ODEHEUN integrates y’=f(t,y), y(0)=z0 with Heun
% from t=0 to tend using a fixed step size h=tend/n

which integrates a given system of differential equations y′ = f (t, y) and
stores the results in the matrix Z .The i th row of the matrix Z contains the
values

[ti , y1(ti), . . . , yn(ti)].

Compute and plot the orbits for the three dog velocities. You may want to
stop the integration before executing all n steps when the dog arrives close
to the origin or in the case when vD < vR the dog is near the y-axis.

9.5 Problems 97

Hint:Anapproximation yk ≈ y(tk) of the solution of the differential equation
y′ = f (t, y), y(t0) = y0 is computed for constant stepsize h by the method
of Heun with the following statements

k = 0, 1, 2, . . .

k1 = f (tk, yk)

y∗ = yk + hk1
k2 = f (tk + h, y∗)

tk+1 = tk + h

yk+1 = yk + h

2
(k1 + k2)

Chapter 10
Solutions of Problems

10.1 Chapter 1: Starting

1. Start Matlab with the GUI and watch the introductory video and study the
tutorial.

2. If you own a computer or laptop withoutMatlab then download and install the
open source software GNU Octave on it.

10.2 Chapter 2: How a Computer Calculates

1. Consider the following finite decimal arithmetic: 2 digits for the mantissa and
one digit for the exponent. So the machine numbers have the form ±Z .ZE±Z
where Z ∈ {0, 1, . . . , 9}
(a) How many normalized machine numbers are available?
(b) Which is the overflow- and the underflow range?
(c) What is the machine precision?
(d) What is the smallest and the largest distance of two consecutive machine

numbers?

Solution:

• We first count the machine numbers. We can form 19 different exponents:
−9,−8, . . . , 9. The first digit, before the decimal point, can not be zero,
because we consider only normalized numbers, thus we have 9 possibilities
for the first digit. Thus in total we have 2 × 9 × 10 × 19 = 3420 normalized
machine numbers plus the number zero. Therefore the grand total is 3421
machine numbers.

• The largest number is 9.9E9 = 9,900,000,000 and the smallest positive num-
ber is 1.0E−9. The overflow range is |x | > 9.9E9 and the underflow range is
0 < |x | < 1.0E−9.

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5_10

99

100 10 Solutions of Problems

• The machine precision is the spacing between the numbers in (1, 2) thus
ε = 1.1E0 − 1.0E0 = 1E−1.

• The largest distance between twomachine numbers occurs when the exponent
is 9: 9.9E9 − 9.8E9 = 1E8. The smallest distance is 1.1E−9 − 1.0E−9 =
1E−10.

2. Solving a quadratic equation: Write aMatlab function

function [x1,x2]=QuadraticEq(p,q)

which computes the real solutions of an equation

x2 + px + q = 0.

If the solutions turn out to be complex then write an error message. Test your
program with the following examples:

• (x − 2)(x + 3) = x2 + x − 6 = 0 thus p = 1 and q = −6.
• (x − 109)(x + 2 · 10−9) = x2 + (2 · 10−9 − 109)x + 2
thus p = 2e−9 − 1e9 and q = −1e9.

• (x + 10200)(x − 1) = x2 + (10200 − 1)x − 10200

thus p = 1e200 − 1 and q = −1e200.

Comment your results.

Solution: Using the textbook formula

x1,2 = − p

2
±

√

(p

2

)2 − q

we obtain the function

function [x1,x2]=QuadEquationNaive(p,q)
discriminant=(p/2)ˆ2-q;
if discriminant<0

error(’solutions are complex’)
end
d=sqrt(discriminant);
x1=-p/2+d; x2=-p/2-d;

We test this function:

• (x − 2)(x + 3) = x2 + x − 6 = 0

>> [x1,x2]=QuadEquationNaive(1,-6)

x1=2, x2=-3 correct
• (x − 109)(x + 2 · 10−9) = x2 + (2 · 10−9 − 109)x − 2

>> [x1,x2]=QuadEquationNaive(2e-9-1e9,-2)

x1=1.0000e+09, x2=0 wrong

10.2 Chapter 2: How a Computer Calculates 101

• (x + 10200)(x − 1) = x2 + (10200 − 1)x − 10200

>> [x1,x2]=QuadEquationNaive(1e200-1,-1e200)

x1=Inf, x2=-Inf wrong

Why do we get wrong answers? When looking at the textbook formula we notice
that for large |p| forming p2 may overflow. This is the case in the third example.
On the other hand for small q the formula is

x1,2 = − p

2
±

√

(p

2

)2 − q ≈ − p

2
± p

2

and one solution is affected by cancellation. This is the case in the second example.

We can avoid the overflow by factoring out. The cancellation can be avoided by
computing first the solution which has the larger absolute value and then use the
relation of Vieta:

x1x2 = q

to compute the smaller solutionwithout cancellation. Thus instead of the textbook
formula we use

x1 = −sign(p)

(

|p|/2 + |p|
√

1

4
− q/p/p

)

x2 = q/x1 Vieta

We obtain the function

function [x1,x2]=QuadraticEq(p,q)
if abs(p/2)>1 % avoid overflow
factor=abs(p); discriminant=0.25-q/p/p; % by factoring out

else
factor=1; discriminant=(p/2)ˆ2-q;

end
if discriminant<0
error(’Solutions are complex’)

else
x1=abs(p/2)+factor*sqrt(discriminant); % compute larger solution
if p>0, x1=-x1; end % adapt sign
if x1== 0, x(2)=0;
else

x2=q/x1; % avoid cancellation
end % for smaller solution

end

This time we get

• (x − 2)(x + 3) = x2 + x − 6 = 0

>> [x1,x2]=QuadraticEq(1,-6) x1 = 2 x2 = -3

102 10 Solutions of Problems

correct
• (x − 109)(x + 2 · 10−9) = x2 + (2 · 10−9 − 109)x − 2

>> [x1,x2]=QuadraticEq(2e-9-1e9,-2) x1=1.0000e+09 x2=-2.0000e-09

correct!
• (x + 10200)(x − 1) = x2 + (10200 − 1)x − 10200

>> [x1,x2]=QuadraticEq(1e200-1,-1e200) x1=-1.0000e+200 x2=1

correct!

10.3 Chapter 3: Plotting Functions and Curves

1. We are given the points

x 0.9 2.3 3.9 4.6 5.8 7.3
y 2.9 4.1 4.8 7.0 7.0 8.7

(a) Define a region to plot the points using axis. Use hold to freeze the axis.
(b) Plot the points using the symbol ‘x’.
(c) We want to fit a regression line through the points, that means compute the

parameters a and b such that

yk = axk + b, k = 1, . . . , 6.

This is a linear system of equations with two unknowns and 6 equations.
It cannot be solved exactly, the equations contradict themselves. However,
the Matlab \-operator does solve the system in the least squares sense by
computing the best approximation for all equations.
Form the linear system A

(a
b

) = y and solve it by A\y
(d) Using the computed values of a and b, plot the regression line on the same

plot with the points.

Solution:

x=[0.9 2.3 3.9 4.6 5.8 7.3]’
y=[2.9 4.1 4.8 7.0 7.0 8.7]’

axis([0,8,0,9])
hold
plot(x,y,’x’)
A=[x,ones(size(x))]
z=A\y
a=z(1); b=z(2);
plot(x,a*x+b)

10.3 Chapter 3: Plotting Functions and Curves 103

2. Ellipse plots.

(a) Plot the ellipse with center in origin and the main axis a = 3 on the x-axis
and minor axis b = 1. Plot also the center using the symbol ‘+’.

(b) Now move the ellipse so that the center is the point (4,−1) and the direction
of the main axis has an angle of −30◦ with the x-axis. Plot this new ellipse
in the same frame.

Hint: Use a rotation matrix of the form

Q =
(

cosα − sinα
sinα cosα

)

to rotate the coordinates of the ellipse.

Solution:

clear,clf
axis([-4,8,-4,8])
axis equal % both axes same units
hold
a=3, b=1
t=0:0.01:2*pi;
x=a*cos(t)
y=b*sin(t)
pause
plot(0,0,’+’) % plot first ellipse with center
plot(x,y)
alpha=-pi/6 % -30 degrees % rotation angle
c=cos(alpha), s=sin(alpha)
Q=[c -s; s c] % rotation matrix
pause
E=ones(2,length(x));

104 10 Solutions of Problems

z=diag([4,-1])*E+Q*[x;y]
plot(z(1,:),z(2,:)) % plot second ellipse
plot(4,-1,’x’)

3. Plot for −3 ≤ x ≤ 3 and −5 ≤ y ≤ 5 the function f (x, y) = x2 − 2yx3 using
contour and mesh.

Solution:

clear, clf
[x,y]=meshgrid(-3:0.1:3,-5:0.1:5);
z=x.ˆ2-2*y.*x.ˆ3;
figure(1)
mesh(x,y,z)
figure(2)
contour(x,y,z,250)

10.4 Chapter 4: Some Elementary Functions 105

10.4 Chapter 4: Some Elementary Functions

1. Explain what happens in Algorithm e1 when x = −20.
Hint: look at the size of the largest term and at the final result. What happens
when computing the result in finite arithmetic?

Solution: For large negative x , e.g. for x = −20 and x = −50, we obtain using
the function e1

>> e1(-20)
ans = 5.621884807271559e-09
>> exp(-20)
ans = 2.061153622438558e-09
>> e1(-50)
ans = 1.107293448191918e+04
>> exp(-50)
ans = 1.928749847963918e-22

which are completely incorrect. The reason is that for x = −20, the terms in the
series

1 − 20

1! + 202

2! − · · · + 2020

20! − 2021

21! + · · ·

become large and have alternating signs. The largest terms are

2019

19! = 2020

20! = 4.3e7.

The partial sums should converge to e−20 = 2.06e−9. But because of the growth
of the terms, the partial sums become large as well and oscillate as shown in

106 10 Solutions of Problems

Fig. 10.1 Partial sums of the
Taylor expansion of e−20

Table 10.1 Numerically
computed partial sums of
e−20

Number of
terms summed

Partial sum

20 −2.182259377927747e+07

40 −9.033771892137873e+03

60 −1.042344520180466e−04

80 6.138258384586164e−09

100 6.138259738609464e−09

120 6.138259738609464e−09

Exact value 2.061153622438558e−09

Fig. 10.1. Table10.1 shows that the largest partial sum has about the same size
as the largest term. Since the large partial sums have to be diminished by addi-
tions/subtractions of terms, this cannot happen without cancellation. Neither does
it help to first sum up all positive and negative parts separately, because when the
two sums are subtracted at the end, the result would again suffer from catastrophic
cancellation. Indeed, since the result

e−20 ≈ 10−17 20
20

20!
is about 17 orders of magnitude smaller than the largest intermediate partial sum
and the IEEE Standard has only about 16 decimal digits of accuracy, we cannot
expect to obtain even one correct digit! To obtain a correct value to 16 digits we
would have to compute with over 30 digits.

10.4 Chapter 4: Some Elementary Functions 107

2. Write a Matlab-function to compute sin x using the series (4.7). In order to
avoid cancellation for large |x | reduce the argument to the interval [−π/2,π/2].

Solution:

The reduction of the arguments x to the interval [−π/2,π/2] is important because
the series is alternating and the summation will be affected by catastrophic can-
cellation for large |x |. We first reduce the angle to [0, 2π] using the mod-function
and then in a second step to [−π/2,π/2]. For very large arguments the reduction
by the mod-function will be inaccurate. So we must expect then a less accurate
result.

function s=MySin(x);
% MYSIN Machine-independent computation of sin(x)
% using Taylor Series
if x<0, v=-1; x=-x; else v=1;end % store sign
x=mod(x,2*pi); % reduce angle to [0,2*pi]
if x>pi, x =x-pi; v=-v; end % further reductions
if x>pi/2, x=pi-x; end % so that
if v==-1, x=-x; end % -pi/2<x<pi/2
s=x; t=x; i=1; sold=2*x; % sum the series
while s˜=sold,
sold=s; i=i+2;
t=-t*x/(i-1)*x/i;
s=sold+t;

end

>> x=1000; [MySin(x)-sin(x)]
ans =

2.1760e-14
>> x=10; [MySin(x)-sin(x)]
ans =
-2.2204e-16

>> x=1e10; [MySin(x)-sin(x)]
ans =

3.4036e-07
>> x=-1000; [MySin(x)-sin(x)]
ans =
-2.1760e-14

3. Do the same for cos x .

Solution: We proceed similarly as with MySin. The reduction needs adjustment.

function s=MyCos(x)
% MYCOS Machine-independent computation of cos(x)
% using Taylor Series
x=abs(x); v=1; % cos is symmetric
x=mod(x,2*pi); % reduce angle to [0,2*pi]
if x>3*pi/2,

x =x-2*pi; % further reductions

http://dx.doi.org/10.1007/978-3-319-25327-5_4

108 10 Solutions of Problems

elseif x>pi/2, % so that
x=x-pi; v=-1; % -pi/2<x<pi/2

end
s=1; t=1; i=0; sold=2; % sum the series
while s˜=sold,
sold=s; i=i+2;
t=-t*x/(i-1)*x/i;
s=sold+t;

end
if v==-1,s=-s;end % adjust sign of function

>> x=1; [MyCos(x)-cos(x)]
ans =
-1.1102e-16

>> x=10; [MyCos(x)-cos(x)]
ans =

2.2204e-16
>> x=-100; [MyCos(x)-cos(x)]
ans =

2.1094e-15
>> x=1000; [MyCos(x)-cos(x)]
ans =
-3.2196e-14

>> x=1e10; [MyCos(x)-cos(x)]
ans =

1.9004e-07

4. Combine both functions and write a function to compute tan x .

Solution: we just use the relation tan x = sin x
cos x

function y=MyTan(x)
% MYTAN compute tan(x) using only the four basic operations.
% refers to MySin and MyCos.
y=MySin(x)/MyCos(x);

>> x=1e10; [MyTan(x)-tan(x)]
ans =

5.1134e-07
>> x=300; [MyTan(x)-tan(x)]
ans =

2.3782e-11
>> x=30; [MyTan(x)-tan(x)]
ans =

5.0626e-14

5. Write a function to compute arctan x for |x | < 1 using the series (4.8) and com-
pare your result with the standard Matlab-function atan(x).

Solution:

function s=MyArctan(x)
% MYARCTAN computes the function arctan(x)

http://dx.doi.org/10.1007/978-3-319-25327-5_4

10.4 Chapter 4: Some Elementary Functions 109

% for |x|<1
s=x; t=x; k=1; sold=0;
while s˜=sold
sold=s; k=k+2; t=-t*xˆ2;
s=s+t/k;

end

>> for x=[0.7,-0.7,0.5,-0.5,0.1,-0.1]
[MyArctan(x)-atan(x)]

end
ans =

1.1102e-16
ans =
-1.1102e-16

ans =
-2.2204e-16

ans =
2.2204e-16

ans =
-2.7756e-17

ans =
2.7756e-17

10.5 Chapter 5: Computing with Multiple Precision

For the following problems, make use of the functions we developed for computing
Euler’s number e.

1. Compute using multiple precision the powers of 2:

2i , i = 1, 2, . . . , 300

Solution:

function Power2(m)
% POWER2 computes the powers of 2 in multiple precision
% 2ˆk, k=0, .., m
n=round(m*log10(2))+1; % compute how many array elements we need
c=10; % we pack one digit in one element
a=zeros(1,n,’uint32’);
a(n)=1;
for k=1:m
a=a*2; % generate next power of 2
a=Carry(c,a);
[’2ˆ’,sprintf(’%01d’,k), ’ = ’, sprintf(’%01d’,a)]

end

2. Write a program to compute factorials using multiple precision:

n!, n = 1, 2, . . . , 200

110 10 Solutions of Problems

Solution: It is not simple to predict how many decimal digits are needed to repre-
sent the number n! The Scottish mathematician James Stirling derived the asymp-
totic formula

n! ∼ √
2πn

(n

e

)n
.

We can estimate using log10 the number of digits. Don’t just take the logarithm
of the above expression! It will become already Inf for n < 200. We have to
split the expression in several logarithms

log10(n!) = log10(
√
2πn) + nlog10(n) − nlog10(e)

to avoid overflow.

function Factorials(n)
% FACTORIALS computes k! for k=1,...,n in multiple precision
% use Stirlings formula to estimate number of digits
m=round(log10(sqrt(2*pi*n))+n*(log10(n)-log10(exp(1))))
c=10; % we pack one digit in one element
a=zeros(1,m,’uint32’);
a(m)=1;
for k=1:n
a=a*k; % generate k!
a=Carry(c,a);
[sprintf(’%01d’,k), ’! = ’, sprintf(’%01d’,a)]

end

3. Compute π to 1000 decimal digits. Use the relation by C. Størmer:

π = 24 arctan
1

8
+ 8 arctan

1

57
+ 4 arctan

1

239
.

Hints:

• Compute first a multiprecision arctan function using the Taylor-series (4.8) as
proposed in Chap.4:

arctan x =
∞

∑

k=0

(−1)k x2k+1

2k + 1
= x − x3

3
+ x5

5
− · · ·

• The above series is alternating so there is a danger of cancellation. However,
since it is used only for |x | < 1 this is not much a concern. What we need is
a new function Sub

function r=Sub(c,a,b)
% SUB computes r=a-b where a and b are multiprecision numbers
% with a>b.

http://dx.doi.org/10.1007/978-3-319-25327-5_4

10.5 Chapter 5: Computing with Multiple Precision 111

to subtract two multiprecision numbers. One has to be careful not to generate
negative numbers, all intermediate results have to remain positive.

• To compute π we have to evaluate for some integer p > 1 the function
arctan(1/p). When generating the next term after

tk = x2k+1

2k + 1

for x = 1/p we have to form

tk+1 = tk/p2/(2k + 1).

There is bug that one has to avoid: by dividing the last term twice by p and a
third time by 2k + 1 the variable imin is updated. For the next term we need
to know the value of imin before the division by 2k + 1! Otherwise we will
get erroneous results when forming tk/p2.

Solution:

For the subtraction of two multiple precision numbers we propose

function r=Sub(c,a,b)
% SUB computes r=a-b where a and b are multiprecision numbers
% with a>b.
n=length(a);
r=a;
for i=n:-1:1
while a(i)<b(i) % need to borrow from left
a(i)=a(i)+c; b(i-1)=b(i-1)+1;

end
r(i)=a(i)-b(i);

end

We reuse the functions Divide, Add and Carry. The multiprecision function
for arctan becomes

function s=AtanMultPrec(c,n,p)
% ATANMULTPREC computes n*log10(c) decimal digits
% of the function value s=arctan(1/p) where p>1 is
% an integer number
s=zeros(1,n,’uint32’);
s(1)=1;
imin=0; % imin counts leading zeros in t
[s,imin]=Divide(c,imin,p,s); % s=1/p
t=s; % first term
k=1;
sig=1; % the sign of the term
while imin<n
k=k+2;
[t,imin]=Divide(c,imin,pˆ2,t);% new nominator of term

112 10 Solutions of Problems

h=Divide(c,imin,k,t); % division without change of imin
sig=-sig; % change sign
switch sig
case -1
s=Sub(c,s,h); % subtract or

case 1
s=Add(imin,s,h); % add term h to s
s=Carry(c,s);

end
end

Finally we compute π by the function

function s=Pi(c,n)
% PI computes n decimal digits of pi using the
% formula of Stormer.
s=24*AtanMultPrec(c,n,8); % generate the 3 terms
t2=8*AtanMultPrec(c,n,57);
t3=4*AtanMultPrec(c,n,239);
s=Add(1,s,t2); % add the terms
s=Add(1,s,t3);
s=Carry(c,s);
sprintf(’%01d’,s)

and get for n = 1000

>> tic, Pi(10,1000); toc
ans =
3141592653589793238462643383279502884197169399
3751058209749445923078164062862089986280348253
4211706798214808651328230664709384460955058223
1725359408128481117450284102701938521105559644
6229489549303819644288109756659334461284756482
3378678316527120190914564856692346034861045432
6648213393607260249141273724587006606315588174
8815209209628292540917153643678925903600113305
3054882046652138414695194151160943305727036575
9591953092186117381932611793105118548074462379
9627495673518857527248912279381830119491298336
7336244065664308602139494639522473719070217986
0943702770539217176293176752384674818467669405
1320005681271452635608277857713427577896091736
3717872146844090122495343014654958537105079227
9689258923542019956112129021960864034418159813
6297747713099605187072113499999983729780499510
5973173281609631859502445945534690830264252230
8253344685035261931188171010003137838752886587
5332083814206171776691473035982534904287554687
3115956286388235378759375195778185778053217122
6806613001927876611195909216419964

Elapsed time is 35.828138 seconds.

10.6 Chapter 6: Solving Linear Equations 113

10.6 Chapter 6: Solving Linear Equations

1. LU-decomposition Consider the linear system Ax = b defined by the matrix

>> format short e, format compact
>> n=5; A=invhilb(n), b=eye(n,1)

(a) Apply Gaussian Elimination (without pivoting) to reduce the system to
U x = y

for j=1:n-1 % Elimination
for k=j+1:n
fak=A(k,j)/A(j,j);
A(k,j:n)=A(k,j:n)-fak*A(j,j:n);
b(k)=b(k)-fak*b(j);

end
end

Watch the elimination process by displaying the matrix and the right hand
side after each elimination step. Use the pause statement to stop execution.

Solution:

for j=1:n-1 % Elimination
for k=j+1:n
fak=A(k,j)/A(j,j);
A(k,j:n)=A(k,j:n)-fak*A(j,j:n);
b(k)=b(k)-fak*b(j);

end
[A, b] % display A and b
pause % wait for ret

end

We observe the elimination process and get at the end

>> A
A =

25 -300 1050 -1400 630
0 1200 -6300 10080 -5040
0 0 2205 -5880 3780
0 0 0 448 -504
0 0 0 0 9

>> b
b =

1.0000
12.0000
21.0000
11.2000
1.8000

We see the reduction of A to an upper triangular matrix U .

114 10 Solutions of Problems

(b) Next store the factors fak instead of the zeros you introduce by eliminat-
ing x j :

for j=1:n-1 % Elimination
for k=j+1:n
fak=A(k,j)/A(j,j);
A(k,j)=fak; % store factors instead zeros
A(k,j+1:n)=A(k,j+1:n)-fak*A(j,j+1:n);

end
end

Now use the commands triu, tril, diag to extract L andU from A and
verify that indeed LU = A.

Solution: The second version of Gaussian Elimination stores the factors used for
elimination where we would produce the zeros. Notice the difference

A(k,j:n)=A(k,j:n)-fak*A(j,j:n); % first version
A(k,j+1:n)=A(k,j+1:n)-fak*A(j,j+1:n); % second version

Now we get the results

A =
2.5000e+01 -3.0000e+02 1.0500e+03 -1.4000e+03 6.3000e+02
-1.2000e+01 1.2000e+03 -6.3000e+03 1.0080e+04 -5.0400e+03
4.2000e+01 -5.2500e+00 2.2050e+03 -5.8800e+03 3.7800e+03
-5.6000e+01 8.4000e+00 -2.6667e+00 4.4800e+02 -5.0400e+02
2.5200e+01 -4.2000e+00 1.7143e+00 -1.1250e+00 9.0000e+00

The reduced matrix U is still in the upper part and can be extracted by

>> U=triu(A)
U =

25 -300 1050 -1400 630
0 1200 -6300 10080 -5040
0 0 2205 -5880 3780
0 0 0 448 -504
0 0 0 0 9

The function triu is an abbreviation for “upper triangle”. The matrix L is con-
structed from the factors we stored instead of the zeros. With

>> L=tril(A)
L =

1.0e+03 *
0.0250 0 0 0 0

-0.0120 1.2000 0 0 0
0.0420 -0.0053 2.2050 0 0

-0.0560 0.0084 -0.0027 0.4480 0
0.0252 -0.0042 0.0017 -0.0011 0.0090

we get the lower triangle of A including the diagonal. We need now to replace
the diagonal by all number 1. The function diag is useful for that. With

10.6 Chapter 6: Solving Linear Equations 115

>> D=diag(L)
D =

25
1200
2205
448

9

we extract the diagonal as a vector. If we use diag with a vector as argument
then a diagonal matrix is produced:

>> D=diag(D)
D =

25 0 0 0 0
0 1200 0 0 0
0 0 2205 0 0
0 0 0 448 0
0 0 0 0 9

Now we can form

>> L=L-D+eye(5)
L =

1.0000 0 0 0 0
-12.0000 1.0000 0 0 0
42.0000 -5.2500 1.0000 0 0
-56.0000 8.4000 -2.6667 1.0000 0
25.2000 -4.2000 1.7143 -1.1250 1.0000

So to summarize we just have to write

>> U=triu(A); % decompose A, upper part
>> L=tril(A); % extract lower triangular matrix
>> L=L-diag(diag(L))+eye(size(L)); % adjust diagonal
>> L*U
ans =

25 -300 1050 -1400 630
-300 4800 -18900 26880 -12600
1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200
630 -12600 56700 -88200 44100

and we get L*U=A as expected.
2. Replace the computation of the rotation matrix S in our function

EliminationGivens by theMatlab-function planerot. Convince your-
self that you get the same results with the modified function by solving the curve
fitting example again.

Solution:

function x=EliminationGivens2(A,b);
% ELIMINATIONGIVENS solves a linear system using Givens-rotations
% x=EliminationGivens(A,b) solves Ax=b using Givens-rotations.

116 10 Solutions of Problems

[m,n]=size(A);
for i= 1:n
for k=i+1:m
if A(k,i)˜=0
[S,y] = planerot([A(i,i);A(k,i)]);
A(i,i)=y(1);
A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);
b(i:k-i:k)=S*b(i:k-i:k);

end
end;
if A(i,i)==0
error(’Matrix is rank deficient’);

end;
end
x=zeros(n,1);
for k=n:-1:1 % backsubstitution
x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end
x=x(:);

Indeed by replacing EliminationGivens by EliminationGivens2 in
CurveFit we get the same results.

3. Determine the parameters a and b such that the function f (x) = aebx fits the
following data

x 30.0 64.5 74.5 86.7 94.5 98.9
y 4 18 29 51 73 90

Plot the points and the fitted function.

Hint: If you fit log f (x) the problem becomes very easy!

Solution: Taking the logarithm of the function we get

ln y = ln a + bx .

With the unknown c = ln a the least squares problem becomes

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 30.0
1 64.5
1 74.5
1 86.7
1 94.5
1 98.9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

c
b

)

≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ln 4
ln 18
ln 29
ln 51
ln 73
ln 90

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

% Problem 6_4_1
clear, clf
x=[30.0, 64.5, 74.5, 86.7, 94.5, 98.9]’;
y=[4, 18, 29, 51, 73, 90]’;
A=[ones(size(x)), x]

10.6 Chapter 6: Solving Linear Equations 117

b=log(y);
p=A\b
a=exp(p(1))
b=p(2)
plot(x,y,’o’)
hold
z=[30:100];
plot(z, a*exp(b*z))

The solution is

b = 0.04524310648 and c = 0.00789262406 ⇒ a = 1.00792752.

4. The following statistics lists the population of Shanghai since 1953:

year in million
1953 6.2044
1964 10.8165
1982 11.8597
1990 13.3419
2000 16.4077
2010 23.0192

Fit a polynomial through these data and predict the population for 2016 and 2020.
Plot your results.

Solution:

Matlab provides the functions polyfit to fit a polynomial through points and
polyval to evaluate a polynomial at some points. Thus the problem is readily
solved:

118 10 Solutions of Problems

x=[1953 1964 1982 1990 2000 2010]’
y=[6.2044 10.8165 11.8597 13.3419 16.4077 23.0192]’
p=polyfit(x,y,5) % Interpolate by polynomial of deg. 5
xx=[x;2016; 2020] % add extrapolation points
yy=[y;polyval(p,[2016 2020])’]% extrapolate
plot(xx,yy,’*’)

We get the result 31.5600 millions for 2014 and 40.8764 millions for 2020.

Without using the abovementioned functions we have to compute the coefficients
of the interpolating polynomial by solving the system:

p1x5
1 + p2x4

1 + · · · + p5x1 + p6 = y1
p1x5

2 + p2x4
2 + · · · + p5x2 + p6 = y2

...
...

...

p1x5
6 + p2x4

6 + · · · + p5x6 + p6 = y6

The matrix is a Vandermonde matrix. It can be generated by

A=[x.ˆ5, x.ˆ4, x.ˆ3, x.ˆ2, x, ones(size(x))]

So the coefficients are obtained by p=A\y. Indeed we get

>> A=[x.ˆ5, x.ˆ4, x.ˆ3, x.ˆ2, x, ones(size(x))]
A =

1.0e+16 *
2.8413 0.0015 0.0000 0.0000 0.0000 0.0000
2.9222 0.0015 0.0000 0.0000 0.0000 0.0000
3.0586 0.0015 0.0000 0.0000 0.0000 0.0000
3.1208 0.0016 0.0000 0.0000 0.0000 0.0000
3.2000 0.0016 0.0000 0.0000 0.0000 0.0000
3.2808 0.0016 0.0000 0.0000 0.0000 0.0000

>> p=A\y
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.
RCOND = 2.726773e-28.

10.6 Chapter 6: Solving Linear Equations 119

p =
1.0e+09 *
0.0000
-0.0000
0.0000
-0.0000
0.0222
-8.7968

To evaluate the polynomial we write the function

function y=EvalPoly(p,x)
n=length(p);
y=0;
for i=1:n
y=y*x+p(i);

end

and we obtain the same results as before:

>> y=EvalPoly(p,2016)
y =

31.5602
>> y=EvalPoly(p,2020)
y =

40.8768

Remark: The solution is numerically not optimal. It is not good to evaluate a poly-
nomial in standard form for a few values far away from the origin. A numerically
better solution would be to make a shift and to work with the polynomial

p(x) = p1(x − 1980)5 + p2(x − 1980)4 + · · · + p6.

5. Fitting of circles. We are given the measured points (ξi , ηi):

ξ 0.7 3.3 5.6 7.5 6.4 4.4 0.3 −1.1
η 4.0 4.7 4.0 1.3 −1.1 −3.0 −2.5 1.3

Find the center (c1, c2) and the radius r of a circle (x − c1)2 + (y − c2)2 = r2 that
approximate the points as well as possible. Consider the algebraic fit: Rearrange
the equation of the circle as

2c1x + 2c2y + r2 − c21 − c22 = x2 + y2. (10.1)

With w = r2 − c21 − c22, we obtain with (6.7) for each measured point a linear
equation for the unknowns c1, c2 and w.

• Write a function function drawcircle(C,r) to plot a circle with cen-
ter (C(1),C(2)) and radius r.

• Computer the center and the radius and plot the given points and the fitted
circle.

http://dx.doi.org/10.1007/978-3-319-25327-5_6

120 10 Solutions of Problems

Solution:

We first write a function to plot a circle

function drawcircle(C,r,w);
% draws a circle with center (C(1), C(2)) and radius r
if nargin==2, w =’-’; end
theta = [0:0.02:2*pi];
plot(C(1)+r*cos(theta), C(2)+r*sin(theta),w);
plot(C(1),C(2),’x’);

The main program is straightforward:

xi = [0.7 3.3 5.6 7.5 6.4 4.4 0.3 -1.1]’;
eta = [4.0 4.7 4.0 1.3 -1.1 -3.0 -2.5 1.3]’;
A = [2*xi 2*eta ones(size(xi))]
b=xi.ˆ2+eta.ˆ2;
x = A\b
C=x(1:2)
r=sqrt(x(3)+C(1)ˆ2+C(2)ˆ2)
plot(xi,eta,’o’)
axis equal
hold
drawcircle(C,r)

The results are

C =
3.060303565727350
0.743607321042322

>> r
r =

4.109137036074778

6. Seven dwarfs are sitting around a table. Each one has a cup. The cups containmilk,
all together a total of 3 liter. One of the dwarfs starts distributing his milk evenly

10.6 Chapter 6: Solving Linear Equations 121

over all cups. After he has finished his right neighbor does the same. Clockwise
the next dwarfs proceed distributing their milk. After the 7th dwarf has distributed
his milk, there is in each cup as much milk as at the beginning. How much milk
was initially in each cup?

Hint: Let x = (x1, x2, . . . , x7)
 be the initial milk distribution. Thus
∑7

j=1
x j = 3. Simulate the distributing of milk as matrix-vector Operation:

x(1) = T1x.

After 7 distributions you obtain x(7) = x and thus

x = T7T6 · · · T1x

or (A − I)x = 0 where A = T7T6 · · · T1. Add to this homogeneous system the
equation

∑7
j=1 x j = 3 and solve the system using our function Elimination

Givens. Compare the results you get with those when using Matlab’s \-
operator.

Solution: Let

x (0)
1 , . . . , x (0)

7 be the initial milk amounts

and let

x (1)
1 , . . . , x (1)

7 the amounts after the first distribution.

We have

x(1) = T (1)x(0),

where

T (1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/7 0 · · · 0
1/7 1 0 · · · 0

1/7 0 1
. . .

...
...

...
. . .

. . . 0
1/7 0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The i th distribution is given by the transformation

x(i) = T (i)x(i−1)

where T (i) looks like T (1) only the column with the elements 1/7 is now the i th
column instead of the first. For the final state we have

122 10 Solutions of Problems

x(7) = T (7) · · · T (1)
︸ ︷︷ ︸

A

x(0)

and since x(7) = x(0) =: x we obtain the homogeneous linear system

(A − I)x = 0.

One can prove that a non-trivial solutions exist. The solution is unique if we
consider the total amount of milk and if we add the equation

x1 + x2 + · · · + x7 = 3

to the system.

% Dwarfs Milk Distribution Problem
I=eye(7);
e=ones(7,1);
e7=e/7;
A=I;
for k=1:7
T=I; % construct T_i
T(:,k)=e7;
A=T*A;

end
B=[A-I; e’];
b=[zeros(size(e));3]; % add total amount of milk
x=B\b

Check = A*x

x =
0.7500
0.6429
0.5357
0.4286
0.3214
0.2143
0.1071

7. The following sections were measured on the street AD depicted in Fig. 6.1
(Fig. 10.2).

AD = 89m,AC = 67m,BD = 53m,AB = 35m and CD = 20m

Balance out the measured sections using the least squares method.

A B C D

Fig. 10.2 Street

http://dx.doi.org/10.1007/978-3-319-25327-5_6

10.6 Chapter 6: Solving Linear Equations 123

Solution:

Let x1 = AB, x2 = BC and x3 = C D. The measurements lead to the equations

x1 + x2 + x3 = 89
x1 + x2 = 67
x2 + x3 = 53

x1 = 35
x3 = 20

⇐⇒ Ax = b, A =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1
1 1 0
0 1 1
1 0 0
0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

, b =

⎛

⎜

⎜

⎜

⎜

⎝

89
67
53
35
20

⎞

⎟

⎟

⎟

⎟

⎠

Solving the system with the \-operator we get
>> A = [1 1 1; 1 1 0; 0 1 1; 1 0 0; 0 0 1];
>> b = [89; 67; 53; 35; 20];
>> x = A\b
x =

35.1250
32.5000
20.6250

We obtain the same result with our function EliminationGivens:

>> x=EliminationGivens(A,b)
x =

35.1250
32.5000
20.6250

10.7 Chapter 7: Recursion

1. Cramer’s Rule for solving systems of linear equations. This rule is often used
when solving small (n ≤ 3) systems of linear equations by hand.
Write a function x=Cramer(A,b) which solves a linear system Ax = b using
Cramer’s rule. For det(A) �= 0, the linear system has the unique solution

xi = det(Ai)

det(A)
, i = 1, 2, . . . , n, (10.2)

where Ai is the matrix obtained from A by replacing column a : i by b. Use the
function DetLaplace to compute the determinants.
Test your program by generating a linear system with known solution.

Solution:

function x=Cramer(A,b);
% CRAMER solves a linear System with Cramer’s rule
% x=Cramer(A,b); Solves the linear system Ax=b using Cramer’s

124 10 Solutions of Problems

% rule. The determinants are computed using the function DetLaplace.

n=length(b);
detA=DetLaplace(A);
for i=1:n
AI=[A(:,1:i-1), b, A(:,i+1:n)];
x(i)=DetLaplace(AI)/detA;

end
x = x(:);

>> A=rand(7,7);
>> x=[1:7]’;
>> b=A*x;
>> xx=Cramer(A,b);
>> norm(x-xx)
ans =

1.1997e-13

2. Selection Sort versus Quick Sort.
The idea of selection sort is to find the minimum value in the given array and then
swaps it with the value in the first position. By repeating this for the remaining
elements the array is sorted.

(a) Write a (non-recursive) function a=SelectSort(a) which implements
the Selection Sort. Show the process using bar and pause as done in Quick
Sort. Test your program by sorting some small arrays (n ≤ 100)

Solution:

function a = SelectionSort(a)
n=length(a);
for i=1:n-1
[amin,k]=min(a(i:n)); k=k+i-1;
if k˜=i % swap

h=a(k); a(k)=a(i); a(i)=h;
% bar(a); pause(0.01)
end

end

(b) Speed Test: Remove the bar and pause statement in both functions and
measure the time each function needs to sort an array of 100’000 elements.
Use for this the Matlab-functions tic and toc.

Solution: We comment out the line in both functions with the statements
bar(a); pause(0.01) and run the main program

% speed test
clear
global a
n=100000
aa=rand(1,n);
a=aa; tic, a=SelectionSort(a); toc
a=aa; tic, quick(1,n); toc

10.7 Chapter 7: Recursion 125

We get on our laptop the result

>> SpeedTest
n =

100000
Elapsed time is 13.458101 seconds.
Elapsed time is 1.511749 seconds.

Clearly quick wins over SelectionSort.
(c) For fun (not efficient!): program the selection sort recursively. Use a global

array and proceed similarly as with quicksort.

Solution: We need a main program which defines the global array a:

% SelectionSortMain.m
global a
n=50
a=rand(1,n);
bar(a)
pause
SelectionSortRec(1,n)
bar(a)

The recursive function SelectionSortRec is designed similarly like
quick. However, it is very inefficient since it is a single recursion. For
n elements we need also n recursive calls!

function SelectionSortRec(left,n)
global a
if left<n,

[amin,k]=min(a(left:n));
k=k+left-1;
if k˜=left % swap

h=a(k); a(k)=a(left); a(left)=h;
end
bar(a); pause(0.01)
left=left+1;
SelectionSortRec(left,n);

end

3. Pythagoras Tree1:
Basic construction: Given two points P and Q in the plane, construct the points
P ′ and Q′ to built a square. Then put on the square a right triangle with one basis
angle α.
The following figure shows the basic construction and the first recursion step,
where the construction is repeated on top of the cathetes of the triangle P ′ RQ′.

1https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal).

https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal)

126 10 Solutions of Problems

Write a recursive function which computes the Pythagoras tree until the base line
P Q becomes small. Experiment with the basis angle, choose e.g. as here in the
figure α = 20◦.

Solution: Recursive function:

function ptree(P,Q,alpha)
% PTREE constructs a Pythagorean tree
% ptree(P,Q,alpha) plots a Pythagorean tree over the basis line given by the
% two points P=(p1,p2) an Q=(q1,q2) in the plane with a right triangle
% with one basis angle alpha (in degrees)

g=norm(P-Q); % length of square
r=Q-P; r=r/norm(r); % direction vector
n=[-r(2), r(1)]; % normal vector
Ps=P+n*g; Qs=Q+n*g; % other corners of square
X=[P;Q;Qs;Ps;P]’;
plot(X(1,:), X(2,:)) % draw the square

c=cos(alpha); s=sin(alpha);
Rot=[c s;-s c]; % rotation matrix Rot
R=Ps+r*Rot*g*c; % construct triangle Ps-R-Qs over Ps-Qs
Y=[Ps;R;Qs]’; % draw triangle
plot(Y(1,:), Y(2,:))
if g>0.1 % recursion for both sides
ptree(Ps,R,alpha); % of triangle

10.7 Chapter 7: Recursion 127

ptree(R,Qs,alpha)
end

Main program:

% Mainprogram Mainptree.m
% recursive Pythagoras tree
% example of a fractal
clf
axis([-25,15,-5,35])
axis square
hold
alpha=input(’angle=? (degrees)’)
ptree([1,1],[5,0],alpha*pi/180)

4. Permutations: Matlab has the function perms to compute permutations. For
instance

>> a=[1 2 3]
a =

1 2 3
>> perms(a)
ans =

3 2 1
3 1 2
2 3 1
2 1 3
1 2 3
1 3 2

displays all 6 permutations of the three numbers.

128 10 Solutions of Problems

Write a recursive function Permute(n)which does the same. Choose the array
a as global variable.

Solution:

function Permute(k)
global a Z
if k==1 % finish recursion
Z=[Z;a]; % and store permutation

else
Permute(k-1); % permute a_1, ..., a_{k-1}
for i=1:k-1

t=a(i); a(i)=a(k); a(k)=t; % exchange a_i <-> a_k
Permute(k-1) % and permute
t=a(i); a(i)=a(k); a(k)=t; % exchange back

end
end

Indeed we get with

% MainPermute.m
global a Z
a=[1 2 3]
Z=[];
Permute(3)
Z

>> MainPermute
a =

1 2 3
Z =

1 2 3
2 1 3
3 2 1
2 3 1
1 3 2
3 1 2

the desired permutations.

10.8 Chapter 8: Iteration and Nonlinear Equations

1. Bisection-Algorithm. Improve the function Bisekt. Your function [x,y]=
Bisection(f,a,b,tol) should also compute a zero for functions with
f (a) > 0 and f (b) < 0 to a given tolerance tol. Be careful to stop the iter-
ation in case the user asks for a too small tolerance! If by the bisection process
we arrive at an interval (a, b)which does not contain a machine number anymore
then it is high time to stop the iteration.

10.8 Chapter 8: Iteration and Nonlinear Equations 129

Solution:

function [x,y]=Bisection(f,a,b,tol)
% BISECTION computes a root of a scalar equation
% [x,y]=Bisection(f,a,b,tol) finds a root x of the scalar function
% f in the interval [a,b] up to a tolerance tol. y is the
% function value at the solution

fa=f(a); v=1; if fa>0, v=-1; end;
if fa*f(b)>0
error(’f(a) and f(b) have the same sign’)

end
if (nargin<4), tol=0; end;
x=(a+b)/2;
while (b-a>tol) & ((a < x) & (x<b))
if v*f(x)>0, b=x; else a=x; end;
x=(a+b)/2;

end
if nargout==2, y=f(x); end;

2. Solve with bisection the equations

(a) x x = 50 (b) ln(x) = cos(x) (c) x + ex = 0.

Hint: a starting interval is easy to find by sketching the functions involved.

Solution:

(a) The function x x is monotonically increasing. Since 11 = 1 and 44 = 256 the
values a = 1 and b = 4 can be used for the bisection. The solution becomes

>> [x,f]=Bisection(@(x) xˆx-50,1,4)
x =

3.287262195355581
f =

7.105427357601002e-15

(b) Drawing the functions ln(x) and cos(x) we see that their cutting point is in
the interval (0,π/2), thus

>> [x,f]=Bisection(@(x) log(x)-cos(x),0,pi)
x =

1.302964001216012
f =

-2.220446049250313e-16

(c) We write the equation ex = −x and from the graph of the two functions we
get the interval (−1, 0) for the solution, so

>> [x,f]=Bisection(@(x) exp(x)+x,-1,0)
x =
-0.567143290409784

f =
-1.110223024625157e-16

130 10 Solutions of Problems

3. Find x such that
x

∫

0

e−t2dt = 0.5.

Hint: the integral cannot be evaluated analytically, so expand it in a series and
integrate. Write a function f(x) to evaluate the series. Then use bisection to
compute the solution of f (x) − 0.5 = 0.

Solution:

Take the series for ex , substitute x = −t2 and integrate to get the expansion

x
∫

0

e−t2dt = x − x3

1! 3 + x5

2! 5 − x7

3! 7 + x9

4! 9 ∓ · · · (10.3)

For evaluating the series we introduce the expressions

ta := (−1)i−1 x2i−1

(i − 1)! t := (−1)i x2i+1

i !
then t = −ta ∗ x2/ i and the partial sum is updated by snew = sold + t/(2 ∗ i + 1).
We will stop the summation when snew = sold. Thus we get

function y=ff(x);
% is used in IntegralExp.m
t=x; snew=x; sold=0; i=0;
while sold ˜= snew
i=i+1;
sold=snew;
t=-t*xˆ2/i;
snew=sold+t/(2*i+1);

end
y=snew;

>> [x,f]=Bisection(@(x) ff(x)-0.5,0,1)
x =

0.551039427609027
f =

0

4. Use bisection to create the following table:

F 0 0.1π 0.2π … π
h 0 ? ? … 2

10.8 Chapter 8: Iteration and Nonlinear Equations 131

where the function F(h) is given by

F(h) = π − 2 arccos
h

2
+ h

√

1 −
(

h

2

)2

.

Solution: To compute the table entries we loop through the values 0 : 0.1π : π.
The equation to be solved by bisection changes during the loop. A simple way to
deal with this is to use a global variable. The main program becomes:

% Table.m
global f
format long
res=[];
for f=0:0.1*pi:pi;
[x y]=Bisection(@F,0,2);
res=[res; f x y];

end;
res

and the function is

function z=F(h)
global f
z=pi-2*acos(h/2.0)+h.*sqrt(1-(h/2).ˆ2)-f;

Running the program we obtain

res =
0 0 0

0.314159265358979 0.157241774836456 0.000000000000000
0.628318530717959 0.315472387600032 0
0.942477796076938 0.475764878639765 -0.000000000000000
1.256637061435917 0.639383019581008 0.000000000000000
1.570796326794897 0.807945506599034 -0.000000000000000
1.884955592153876 0.983723665527420 0.000000000000000
2.199114857512855 1.170274845761590 0
2.513274122871834 1.374097652265081 0.000000000000000
2.827433388230814 1.610767273040240 0
3.141592653589793 2.000000000000000 0

5. Binary search: we are given an ordered sequence of numbers:

x1 ≤ x2 ≤ · · · ≤ xn

and a new number z. Write a program that computes an index value i such that
either xi−1 < z ≤ xi or i = 1 or i = n + 1 holds. The problem can be solved by
considering the function

f (i) = xi − z

and computing its “zero” by bisection.

132 10 Solutions of Problems

Solution:

function Binsearch(z,x)
n=length(x);
if z<x(1),
disp(strcat(’z = ’,num2str(z),’ is smaller than x(1) = ’,num2str(x(1))))

elseif z>x(n),
disp(strcat(’z = ’,num2str(z),’ is larger than x(n) = ’,num2str(x(n))))

else
a=1; b=n;
while a+1˜=b

i=round((a+b)/2);
if x(i)<z; a=i;
else b=i;
end

end
i=b;
disp(strcat(’i = ’,num2str(i),’ and ’,’ z = ’,num2str(z),’ is in [’,...

num2str(x(a)),’, ’,num2str(x(b)),’]’))
end

We test this function with the main program

% MainBinSearch.m
x=[-1.4 0 3.7 5.1 7.9 9.4 11.6 13.1 17 25.4 26]’
for z=[8, 17.5, -3, 32]
BinSearch(z,x)
end

>> MainBinSearch
x =

-1.4000
0

3.7000
5.1000
7.9000
9.4000

11.6000
13.1000
17.0000
25.4000
26.0000

i =6 and z =8 is in [7.9,9.4]
i =10 and z =17.5 is in [17,25.4]
z =-3 is smaller than x(1) =-1.4
z =32 is larger than x(n) =26

6. Compute x where the following maximum is attained:

max
0<x< π

2

(

1

4 sin x
+ sin x

2x
− cos x

4x

)

.

Solution: We differentiate and compute the zero of the derivative using bisection.
We choose for a = 0.001 since with a = 0 the denominator is zero

10.8 Chapter 8: Iteration and Nonlinear Equations 133

>> Bisection(@(x) cos(x)/4/x*(2-x/(sin(x))ˆ2+1/x)+...
sin(x)/4/x*(1-2/x),0.001,pi/2)

ans =
1.031158096685125

7. Write a function s=SquareRoot(a) which computes the square root using
Heron’s algorithm. Think of a good starting value and a good termination crite-
rion.

Hint: consider the geometrical interpretation of Newton’s method and use the
(theoretical) monotonicity of the sequence as termination criterion.
Test your function and compare the results with the standard Matlab-function
sqrt. Compute the relative error of both functions

Solution:

function s = SquareRoot(a);
% SQUAREROOT computes the square root
% using Heron’s algorithm
xold = (1+a)/2; xnew = (xold+a/xold)/2;
while xnew<xold % as long as monotone
xold = xnew; xnew = (xold+a/xold)/2;

end
s = xnew;

With the testprogram

% TestSquareRoot.m
z=[];
for x = 1:10:1000
z = [z; x (SquareRoot(x)-sqrt(x))/sqrt(x)];

end
for i = 1:30
fprintf(’%10d %15.6e %10d %15.6e %10d %15.6e\n’, z(i,1),z(i,2), ...

z(i+30,1),z(i+30,2), z(i+60,1),z(i+60,2))
end

we get excellent results.

8. We consider again Problem 3: find x such that

f (x) =
∫ x

0
e−t2dt − 0.5 = 0.

Since a function evaluation is expensive (summation of the Taylor series) but the
derivatives are cheap to compute, a higher order method is appropriate. Solve this
equation with Newton’s method.

Solution:

% IntegralExp.m
% Solve \int_{0}ˆ{x} eˆ{-tˆ2}dt - 0.5 = 0 with Newton

134 10 Solutions of Problems

% use ff.m to compute Taylor series
format compact, format long
x=1; xa=2;
while abs(xa-x)>1e-10
xa=x;
y=ff(x)-0.5; ys=exp(-xˆ2);
x=x-y/ys

end

>> IntegralExp
x =

0.329062444950818
x =

0.532365165339031
x =

0.550852862865461
x =

0.551039408434969
x =

0.551039427609027
x =

0.551039427609027

9. Using Newton’s iteration, find a such that
∫ 1

0
eat dt = 2.

Solution:

We have
1

∫

0

eat dt = 1

a
eat

]1

0

= 1

a
ea − 1

a

Thus we are looking for the solution of the equation

f (a) = ea − 1

a
− 2 = 0

We use Newton’s method and get a = 1.2564312086.

10. Consider the billiard-problem. Let the ball P be at position P = (0.5, 0.5) and
let Q move in small steps (say 0.1) from 1 to −1.
Compute for each position the solutions using bisection. Count and plot the solu-
tions and plot also the function billiard. make a pause before moving on
the the next position of Q.

Solution:

% MainBilliard.m
% Animation for the billiard problem
clear, clf, format compact
figure(1) % to show the billiard table

10.8 Chapter 8: Iteration and Nonlinear Equations 135

figure(2) % to plot the function billiard(x)
pause % to separate the two figures
global px py a % ball positions P=(px.py), Q=(a,0)

px=0.5; py=0.5;

for a=1:-0.1:-1 % move Q
a
figure(1), clf(1)
axis equal, hold
t=0:0.01:2*pi; % plot circle
plot(cos(t),sin(t))
plot(px,py,’o’) % plot point P
text(px,py,’ P’)
plot(a,0,’o’) % plot point Q
text(a,0,’ Q’)
P=[px,py]; Q=[a,0];

%%%
N=200; h=2*pi/N; % sample billiard
xa=0; fa=billiard(xa);
k=0; Sols=[];
for i=1:N,
xb=i*h; fb=billiard(xb);
if fa*fb <=0; % if sign change call Bisection
x=Bisection(@billiard,xa,xb) % compute angle
k=k+1; Sols=[Sols,x]; % count and store solution
X=[cos(x),sin(x)] % Reflection point
text(X(1),X(2),[’ X’,num2str(k)]);
plot([Q(1),X(1)], [Q(2),X(2)]) % plot trajectory
plot([X(1),P(1)], [X(2),P(2)])

end;
xa=xb; fa=fb;

end;
%%%
F=[];
X=0:0.01:2*pi;
for x=X
F=[F,billiard(x)];

end
figure(2)
plot(X,F,[0,2*pi],[0,0])
legend(’billiard(x)’)
Sols
k
if a==1, pause % to explain what is going on
else
pause(1)

end
end

136 10 Solutions of Problems

11. Modify the fractal program by replacing f (z) = z3 − 1 with the function

f (z) = z5 − 1.

(a) Compute the 5 zeros of f using the command roots.
(b) In order two distinguish the 5 different numbers, study the imaginary parts

of the 5 zeros. Invent a transformation such that the zeros are replaced by 5
different positive integer numbers.

Solution:Wefirst compute the zeros of z5 − 1. The coefficients of the polynomial
z5 − 1 are

p=[1 0 0 0 0 -1]

With the function roots we can compute the zeros

>> W=roots(p)
W =
-0.809016994374948 + 0.587785252292473i
-0.809016994374948 - 0.587785252292473i
0.309016994374947 + 0.951056516295152i
0.309016994374947 - 0.951056516295152i
1.000000000000000 + 0.000000000000000i

If we multiply the imaginary part by 2 we get

>> 2*imag(W)
ans =

1.175570504584946
-1.175570504584946
1.902113032590305

-1.902113032590305
0

Now we can add 3 and round the result to get

>> round(2*imag(W)+3)
ans =

4
2
5
1
3

By multiplying with the factor a = 10 we get a beautiful fractal.

n=1000; m=30;
x=-1:2/n:1;
[X,Y]=meshgrid(x,x);
Z=X+1i*Y; % define grid for picture
for i=1:m % perform m iterations in parallel

Z=Z-(Z.ˆ5-1)./(5*Z.ˆ4); % for all million points
end; % each element of Z contains one root

10.8 Chapter 8: Iteration and Nonlinear Equations 137

a=10;
image(round(2*imag(Z)+3)*a);

12. Mandelbrot set: Consider the iteration

Zk+1 = Z2
k + C.

Depending on the value of the constant C the sequence {Zk} will either diverge
to ±∞ or converge.
Let C now be in the region in the complex plane Z = X + iY with −2 ≤ X,Y
≤ 2.
Perform 50 iterations starting always with Z0 = 0 with all numbers C in that
region and plot using image the resulting Mandelbrot set, which is the set of
all values C for which the iterations converges to a finite limit.

Solution:

% Mandelbrot.m
clf;
n=1000; m=50;
x=-1.6:2/n:1.6;
[X,Y]=meshgrid(x,x);
C=X+1i*Y; % define grid for picture
Z=0*C;
for i=1:m % perform m iterations in parallel

Z=Z.ˆ2+C; % for all million points
end; % each element of Z contains the limit
a=30;
image(isfinite(Z)*a); % and display image

138 10 Solutions of Problems

10.9 Chapter 9: Simulation

1. Waiting for the elevator.We consider a buildingwith n floors. A elevator is serving
these floors andwe are interested to know the distribution of thewaiting time from
pressing the elevator button till the elevator opens the door.
Assume the time unit for the moving of the elevator one floor is one. We make
m experiments in which the elevator is randomly located on one floor and the
person is also coming randomly on one floor. The difference of the two floors is
proportional to the time the elevator needs to come.
Perform m = 10,000 experiments for a n = 10 floors building. Construct and
plot the histogram of the waiting times.
What is the most likely waiting time?

Solution:

% Waiting for the elevator
clear, clf,clc
m=10000 % number of persons
n=10 % number of floors
A=zeros(1,n+1);
for j=1:m
LocationElevator=round(rand*n);
LocationPerson=round(rand*n);
waiting=abs(LocationElevator-LocationPerson);
A(waiting+1)=A(waiting+1)+1;

end
bar(A/m)

10.9 Chapter 9: Simulation 139

It seems that most likely the elevator is one floor up or down when a person wants
to use it.

2. Given a set of points in the unit square. Write a program which computes and
plots the two closest points.

(a) Write a function [P,Q,minimum]=ClosestPoints(x,y) which
computes all the distances between two points and stores theminimal distance
and the two points P and Q which are closest.

(b) Generate n points (xk, yk) using the function rand. Then call the function
ClosestPoints, plot the points and mark the two closest points by col-
oring them differently.

Solution:

function [P,Q,minimum]=ClosestPoints(x,y)
% CLOSESTPOINTS computes the two closest point
%
n=length(x);
minimum=Inf;
for k=1:n
for p=k+1:n
dist=norm([x(k)-x(p);y(k)-y(p)]);
if dist<minimum
minimum=dist;
kmin=k; pmin=p;

end
end

end
P=[x(kmin);y(kmin)];
Q=[x(pmin);y(pmin)];

for n = 20 we get for instance

140 10 Solutions of Problems

3. Shortest distance between two point sets:

(a) Consider the circle with center (5, 6) and radius r = 2 and the ellipse with
center at origin and a = 1 and b = 0.5 parallel to the coordinate axis.
Sample points on the ellipse and on the circle. Compute by brute force a
point P on the circle and a point Q on the ellipse with minimal distance.
Solution:

% DistEllipseCircle.m
% distance between a circle and an ellipse
clear,clf
t=linspace(0,2*pi,300);
X=[5+2*cos(t); 6+2*sin(t)]; % define circle
Y=[cos(t);0.5*sin(t)]; % define ellipse
axis([-2,10,-2,10])
axis square
hold
plot(X(1,:),X(2,:))
plot(Y(1,:),Y(2,:))
minimum=Inf; % compute points with
for x=X % minimal distance
for y=Y
dist=norm(x-y);
if dist<minimum
minimum=dist;
P=x;Q=y;

end
end

end
plot([P(1),Q(1)], [P(2),Q(2)],’or’)
plot([P(1),Q(1)], [P(2),Q(2)],’r’)
distance=minimum
P,Q

>> DistEllipseCircle

10.9 Chapter 9: Simulation 141

Current plot held
distance =

5.0796
P =

3.8126
4.3907

Q =
0.8200
0.2862

(b) The circle with center (5, 6) and radius r = 2 and the ellipse with center
(4, 4), a = 2 and b = 3 intersect. Try to compute the intersection points by
brute force.
Solution:

% IntersectEllipseCircle.m
% intersection points between a circle and an ellipse
clear,clf
t=linspace(0,2*pi,300);
X=[5+2*cos(t); 6+2*sin(t)]; % define circle
Y=[4+2*cos(t);4*3*sin(t)]; % define ellipse

axis([-2,10,-2,10])
axis square
hold
plot(X(1,:),X(2,:))
plot(Y(1,:),Y(2,:))

minimum=Inf; % compute points with
for x=X % minimal distance
for y=Y
dist=norm(x-y);

142 10 Solutions of Problems

if dist<0.07 % 0.07 is by experiment
dist
P=x;Q=y; [x,y]
plot([P(1),Q(1)], [P(2),Q(2)],’or’)

end
end

end

>> IntersectEllipseCircle
Current plot held
dist =

0.0686
ans =

5.5295 5.5109
7.9286 7.8627

dist =
0.0304

ans =
5.8447 5.8737
4.1871 4.1963

dist =
0.0127

ans =
5.8826 5.8737
4.2053 4.1963

dist =
0.0542

ans =
5.9201 5.8737
4.2242 4.1963

We obtain 3 times the approximations for the second intersection point.

10.9 Chapter 9: Simulation 143

4. Knapsack Problem: given a bag with a given maximum load limit W . Put in that
bag items from the following table in order to maximize the sum of the value of
the items but not exceeding the total weight W :

item 1 2 3 4 5 6 7
weights 3.3 4.6 1.7 5.8 7.7 3.1 5.3
values 7 9 5 12 14 6 12

Write a brute force program that solves the problem for a collections of bags:

W = [8, 10, 11, 15, 20, 21, 25, 26, 30, 32]

Solution:

% knapsack problem solved by brute force
clear, clf,clc
A=[1 2 3 4 5 6 7 % item number
3.3 4.6 1.7 5.8 7.7 3.1 5.3 % weights
7 9 5 12 14 6 12]; % values

BagSizes=[8,10,11, 15,20,21,25,26,30,32];

Values=[]; Weights=[];
P=perms(1:length(A));
[m,n]=size(P);
for W=BagSizes
maximum=0;
for k=1:m
t=0; jj=n; % inspect row k
for j=1:n % compute weights
s=t; % not exceeding W
t=s+A(2,P(k,j));
if t>W
jj=j-1; break

end
end
s=0;
for j=1:jj
s=s+A(3,P(k,j)); % compute value

end % and compare if larger
if s>maximum % than current maximum
maximum=s; row=k; col=jj;

end
end
Sol=A(:,P(row,1:col))
weight=sum(A(2,P(row,1:col)))
value=sum(A(3,P(row,1:col)))
Weights=[Weights, weight];
Values=[Values, value];
W

144 10 Solutions of Problems

pause
end

plot(BagSizes,[Weights;Values],’o’)
hold
plot(BagSizes,BagSizes)

We get the figure below where we see that the larger bags are the more also
the total value increases. Furthermore the total weight remains always below the
capacity of the bag indicated by the solid line.

5. A dog would like to cross a river of width b. He starts at point (b, 0) with the
goal to swim to (0, 0) where he has detected a sausage. His swim velocity vD

is constant and his nose points always to the sausage. The river flows north in
direction of the y-axis and velocity of the flow of the river vR is everywhere
constant.

(a) Develop the differential equation describing the orbit z(t) = (x(t), y(t))
 of
the dog.

(b) Program a Matlab function zp=dog(t,z) which describes the differen-
tial equation. The velocities vD and vR may be declared as global variables.

(c) Use the program quiver and plot the slope field for b = 1, vR = 1 and the
following three cases for the dog velocity vD = 0.8, 1.0 and 1.5.
Note: quiver(X,Y,Xp,Yp) needs 4 matrices. X and Y contain the coor-
dinates of the points and Xp and Yp the two components of the velocity at
that point. To compute these you can use the function dog e.g.

z=dog(0,[X(k,j),Y(k,j)]); Xp(k,j)=z(1); Yp(k,j)=z(2);

(d) Develop a Matlab integrator for the method of Heun of order 2

function Z= OdeHeun(f,z0,tend,n)
% ODEHEUN integrates y’=f(t,y), y(0)=z0 with Heun from
% t=0 to tend using a fixed step size h=tend/n

10.9 Chapter 9: Simulation 145

which integrates a given system of differential equations y′ = f (t, y) and
stores the results in the matrix Z .The i th row of the matrix Z contains the
values

[ti , y1(ti), . . . , yn(ti)].

Compute and plot the orbits for the three dog velocities. You may want to
stop the integration before executing all n steps when the dog arrives close
to the origin or in the case when vD < vR the dog is near the y-axis.

Solution:

(a) Let z(t) = (x(t), y(t))
 denote the position of the dog. The direction of the
velocity vector of the dog points always to the the sausage at the origin. The
velocity is overloaded with the river flow velocity which points north. Thus
we get the system of differential equations:

z′(t) =
(

x ′(t)
y′(t)

)

= − vD
√

x(t)2 + y(t)2

(

x(t)
y(t)

)

+
(

0
vR

)

= −vD
z(t)

‖z(t)‖ +
(

0
vR

)

(b) The Matlab function becomes

function zp=dog(t,z)
% dog, river problem
global vD vR
zp=-vD*z/norm(z)+[0,vR];

end

(c) The program for the slope field is

% Velocity field of RiverDog C.m
clear, clf
global vD vR
vR=1; vD=1.5;
r=(0:.06:1)
[X,Y]=meshgrid(r,r)
[m,n]=size(X);
Xp=zeros(m,n); Yp=zeros(m,n);
for k=1:m

for j=1:n
z=dog(0,[X(k,j),Y(k,j)]);
Xp(k,j)=z(1);
Yp(k,j)=z(2);

end
end
quiver(X,Y,Xp,Yp)

146 10 Solutions of Problems

(d) The Heun integrator becomes

function Z= OdeHeun(f,z0,tend,n)
% ODEHEUN integrates y’=f(t,y), y(0)=z0 with Heun from
% t=0 to tend using a fixed step size h=tend/n
global vR vD
y=z0; t=0; Z=[t,y];
h=tend/n;
for k=1:n

k1=f(t,y); ys=y+h*k1;
k2=f(t+h,ys);
y= y+h/2*(k1+k2);
t=t+h;
Z=[Z; t y];
if norm(y)<0.02 | (abs(y(1))<0.02 & vR>vD)

break
end

end

we stop the integration when the dog is near the y − axis or near the origin.
The main program is

% RiverDog.m
clear,clf
global vD vR
vR=1;
%vD=0.8
vD=1
%vD=1.5
axis([-0.1,1,-0.1,1])
axis equal
hold on
z0=[1,0];
Z=OdeHeun(@dog,z0,10,500);
plot(Z(:,2),Z(:,3))

10.9 Chapter 9: Simulation 147

and the results for some dog velocities VD are

vD = 0.8

vD = 1

vD = 1.5

Bibliography

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A., Ham-
marling, S.,McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACKUsersGuide—Release 2.0.
SIAM, Philadelphia (1992)

2. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK Users’ Guide. SIAM,
Philadelphia (1979)

3. Gander, W., Gander, M.J., Kwok, F.: Scientific Computing Using Maple and Matlab. Springer,
Heidelberg (2014)

4. Gander, W., Hřebíček, J.: Solving Problems in Scientific Computing Using Maple and Matlab,
4th edn. Springer, Heidelberg (2004)

5. Garbow,B.S.,Boyle, J.M.,Dongarra, J.J.,Moler,C.B.:MatrixEigensystemRoutinesEISPACK
Guide Extension. Lecture Notes in Computer Science. Springer, Berlin (1977)

6. Grau, A.A., Hill, U., Langmaack, H.: Translation of ALGOL 60. Springer, Berlin (1967)
7. Moler, C.B.: MATLAB Users Guide. Report. University of New Mexico, USA (1980)
8. Moler, C.B.: Experiments with matlab, on line tutorial. http://www.mathworks.com/moler/

exm/chapters.html (2011)
9. Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with MATLAB and Octave.

Springer, Berlin (2014)
10. Rutishauser, H.: Description of ALGOL 60. Springer, Berlin (1967)
11. Smith, B.T., Boyle, J.M., Dongarra, J.J., Garbow, B.S., Ikebe, Y., Klema, V.C., Moler,

C.B.: Matrix Eigensystem Routines—EISPACK Guide. Lecture Notes in Computer Science.
Springer, Berlin (1976)

12. Wilkinson, J., Reinsch, C.: Linear Algebra. Springer, Berlin (1971)
13. Wirth, N.: Algorithms and Data Structures. Prentice Hall, New Jersey (1986)

© Springer International Publishing Switzerland 2015
W. Gander, Learning MATLAB, UNITEXT - La Matematica per il 3+2 95,
DOI 10.1007/978-3-319-25327-5

149

http://www.mathworks.com/moler/exm/chapters.html
http://www.mathworks.com/moler/exm/chapters.html

	Acknowledgment
	Contents
	Introduction
	Some Historical Remarks on the Genesisof MATLAB
	1 Starting and Using Matlab
	1.1 Organize Your Desktop
	1.2 Matlab Scripts and Functions
	1.2.1 Matlab Script
	1.2.2 Matlab Function

	1.3 The Windows Environment
	1.4 The Linux Environment
	1.5 Using GNU Octave
	1.6 Documenting Results
	1.7 Matlab-Elements Used in This Chapter
	1.8 Problems and Exercises

	2 How a Computer Calculates
	2.1 Finite Arithmetic
	2.2 Rounding Errors
	2.3 IEEE-Arithmetic
	2.4 Matlab-Elements Used in This Chapter
	2.5 Problems

	3 Plotting Functions and Curves
	3.1 Plotting a Function
	3.2 Plotting Curves
	3.3 Plotting 3-d Curves
	3.4 Surface and Mesh Plots
	3.5 Contour Plots
	3.6 Matlab-Elements Used in This Chapter
	3.7 Problems

	4 Some Elementary Functions
	4.1 Computing the Exponential Function
	4.2 Computing sin and cos
	4.3 Computing arctan
	4.4 Matlab-Elements Used in This Chapter
	4.5 Problems

	5 Computing with Multiple Precision
	5.1 Computation of the Euler Number e
	5.2 Matlab-Elements Used in This Chapter
	5.3 Problems

	6 Solving Linear Equations
	6.1 Gaussian Elimination and LU Decomposition
	6.2 Elimination with Givens-Rotations
	6.3 Matlab-Elements Used in This Chapter
	6.4 Problems

	7 Recursion
	7.1 Introduction
	7.2 Laplace Expansion for Determinants
	7.3 Hilbert Curves
	7.4 Quicksort
	7.5 Matlab-Elements Used in This Chapter
	7.6 Problems

	8 Iteration and Nonlinear Equations
	8.1 Bisection
	8.2 Newton's Method
	8.2.1 Algorithm of Heron
	8.2.2 Fractal

	8.3 Circular Billiard
	8.4 Matlab-Elements Used in This Chapter
	8.5 Problems

	9 Simulation
	9.1 Event Simulation Using Random Numbers
	9.2 Exhaustive Search
	9.3 Differential Equations
	9.3.1 Numerical Integrator ode45
	9.3.2 Dog Attacking a Jogger

	9.4 Matlab-Elements Used in This Chapter
	9.5 Problems

	10 Solutions of Problems
	10.1 Chapter 1: Starting
	10.2 Chapter 2: How a Computer Calculates
	10.3 Chapter 3: Plotting Functions and Curves
	10.4 Chapter 4: Some Elementary Functions
	10.5 Chapter 5: Computing with Multiple Precision
	10.6 Chapter 6: Solving Linear Equations
	10.7 Chapter 7: Recursion
	10.8 Chapter 8: Iteration and Nonlinear Equations
	10.9 Chapter 9: Simulation

	Bibliography

