
Notes: Parallel MATLAB

Adam Charles∗

Last Updated: August 3, 2010

Contents

1 General Idea of Parallelization 2

2 MATLAB implementation 2
2.1 Parallel Workspaces and Interactive Pools . 3
2.2 Creating and Submitting Jobs . 6

3 Using the Neurolab Cluster 8
3.1 Setup . 8
3.2 Configuring MATLAB . 8
3.3 Testing the Configuration . 10

4 Further information 15

Appendices 15

A Useful Functions 15

∗Thanks to Dustin Li and Jeff Bingham fixing the cluster and for the NeuroCluster setup Instructions

1

1 General Idea of Parallelization

The increase in computer processor speed has reached it’s current practical limitations. Faster clock
speeds are currently not easily attainable due to a mixture of heat considerations and FET latency in
the hardware. Current architectures for High Performance Computing (HPC) now focuses instead
on utilizing multiple cores. While processors a few years ago ran single cores at 3GHz+, now the
trend is to have processors containing 2 cores at lower speeds (2-3GHz). The goal for computer
programs now is to actually utilize these architectures for the benefit of the programmer. The
typical linear programming style has to change to focus more on multiple separate tasks being run
simultaneously. This involves more intelligent design as the programming aspect now requires two
or more schedules to work together. As an example, take a simple program where at each point of
a grid a value f(x, y) needs to be simulated. Sequential programming would simulate each f(x, y)
one after another, only starting the next simulation once the previous one has finished.

for i = 1:N

for j = 1:M

F(i,j) = f(x(i), x(j))

end

end

A more intelligent program running on a parallel machine would realize that each f(x, y) can be
simulated independently, and thus each core can take one pair of (x, y) and evaluate f , thus saving
time. Problems with this level of independence between iterations are known as “embarrassingly
parallel” programs. While techniques exist to parallelize less obviously parallel algorithms, the
parallelization needs to be figured out separately for each algorithm or class of algorithms as no
easy universal rule can be applied. Even with many programs having some degree of parallelization,
many more are not significantly parallelizable, to quote an apt proverb: ”If you give me 9 women,
i can’t give you a baby in 1 month.” Note however, it would be possible to get nine babies in nine
months, averaging out to the desired rate. Thus the first step in parallelizing your program is to
correctly distinguish tasks than can be performed independently.

This document will not go into more detail about how to parallelize different programs. Instead
this document outlines a tool developed to aid in the programming of parallel tasks once the
determination of which tasks are independent is complete. The tool discussed is the MATLAB
parallel implementation available in the parallel computing and distributed computing toolboxes.
The goal of this document is to familiarize the reader with the options available in these toolboxes
for use both on home desktops and high performance computing clusters, as well as to provide
enough practical examples to allow the reader to utilize these packages with a reduced learning
curve.

2 MATLAB implementation

MATLAB currently implements parallel computing in two different ways. MATLAB utilizes the
BASH library to implement linear algebra operations (e.g. a matrix times a matrix) which expands
the computations to any additional available cores. This parallelizes many linear algebra operations

2

automatically. In addition MATLAB includes a parallel computing toolbox toolbox to allow users to
take advantage of the multicore architecture found on nearly every desktop, as well as a distributed
computing toolbox for computer clusters. While GPGPU computing is available through a third
party (Accelereyes’ Jacket package: www.accelereyes.com), no official MATLAB GPU toolbox
currently exists.

2.1 Parallel Workspaces and Interactive Pools

In order to use parallel computing commands, a MATLAB pool must be opened. MATLAB pools
consist of a number of different workers (separate MATLAB instances) linked together by the
internal MATLAB scheduler, each performing tasks as assigned. Pools of workers can be handled
in one of two ways, either an interactive pool can be opened from an open MATLAB instance, or
the pool can be open as part of a job (using matlabpoolJob: see Section 2.2).

Opening a MATLAB pool

To start a pool consisting of mp size MATLAB workers in an open instance of MATLAB, the
command matlabpool.m can be used as in Listing 1 can be used. matlabpool.m is a command
that opens, closes or checks the size of an existing pool of workers. The code shown first checks to
see if a MATLAB pool of the desired size is already open (line 1). If the pool of the desired size
is not already open, lines 2-4 check if any pool of workers is open, and closes the pool if it is. The
code then opens the desired number of workers in a pool on line 5.

Listing 1: Opening a Matlab Pool

1 if matlabpool('size') ˜= mp size
2 if matlabpool('size') == 0
3 matlabpool CLOSE
4 end
5 matlabpool('open', mp size)
6 end

While line 5 can be used independently, opening a pool of workers can take a few seconds, so
checking if a pool is already open can optimize automated code. Additionally, errors occur when
attempting to close a MATLAB pool when none are open, or to open a MATLAB pool when one is
already open. It should be noted that if the only the parallel computing toolbox is available, then
a maximum of eight workers can be opened at once. The distributed computing toolbox eliminates
this limit, allowing for much larger pools.

Once a MATLAB pool is open, parallel jobs can be run by using the appropriate commands.
MATLAB allows varying user control over the specifics of how the parallelization takes place.
Depending on the code, the internal MATLAB scheduler will handle much of the interactivity
between nodes (data passing, assigning tasks). At one end of the spectrum, the user can specify a
very high level command of ”perform each of these tasks in parallel” and MATLAB will determine
the specifics, such as memory allocation, data transfer etc. At the other end of the spectrum,
precise control can be placed over which workers perform which tasks in which order. Even the data
passing can be controlled explicitly. Here the basics of the course-control end of the spectrum will
be described. More information about finer control can be found in the MATLAB documentation.

3

Parfor Loops

The easiest code to parallelize is ”embarrassingly parallel” for loops. In this type of code, each
iteration of a for loop is completely independent of all others, and may be run as its own process.
To handle this large class of code (inclusive of parameter sweeps etc.), MATLAB has implemented
a parfor loop.

parfor loops are written using the same syntax as the usual MATLAB for loops. Thus instead
of typing the syntax in Listing 2, parfor is simply substituted as in Listing 3.

Listing 2: for loop syntax

1 for ii = ii start:ii end
2 % Do calculations
3 end

Listing 3: parfor loop syntax

1 parfor ii = ii start:ii end
2 % Do calculations in parallel
3 end

Within the parfor loop, each iteration is treated as independent from all others, and the
MATLAB built in scheduler portions out each iteration to a worker for computation. The results
are then collected and returned appropriately by the scheduler. Since MATLAB handles all of the
data copying and organization, a few rules need to be followed to prevent errors:

1. ”Slice” all variables. While variable that are uses in their entirety at each iteration can be
references with no problem, if different portions of an array are to be used at every iteration,
they must be ”sliced”. Slicing refers to having non-overlapping sets of indexes used in each
iteration. Similarly, the outputs must be references with appropriate slicing.

2. Don’t use structs. Calling structs within parfor loops can cause them to run slower and
crash. While this might have been a bug in an earlier version of the toolbox, I personally
have not seen this fixed yet.

3. Preallocate all variables. While this should be standard practice for increasing general for
loop efficiency, parfor loops may have iterations finishing non-consecutively, and thus they
need to know where to save the data.

With these rules in mind, parfor loops are a powerful tool to easily parallelize code with
identical, independent tasks, such as parameter sweeping for simulation testing.

Single Program Multiple Data

An alternate method to perform tasks in parallel is to use ‘single program multiple data’ (spmd
in MATLAB) programming. spmd programming allows a finer control over certain aspects of the
process by allowing choice of which worker (referred to as a ‘lab’) executes the code in what fashion.
While spmd does allow for different labs to perform different code simultaneously, the namesake
stems from the easiest and most simple form of using spmd: running the same code on different data

4

sets. In spmd, the same line of code is executed on all labs exactly as it appears. The only difference
is that the variables being called in the code may be different on different labs. For example, take
the code in Listing 4, which calculates the pseudoinverse of a vector designated data vec.

Listing 4: spmd syntax example

1 spmd
2 gram mat = frame i.'*frame i;
3 coefs vec = gram mat\(frame i.'*data vec);
4 end

While Listing 4 essentially tells all labs to run lines 2-3, for each lab, a different variable frame i

or data vec or both can be saved, thus changing the answer coefs vec. By trying different frames
one can, for example, test which frame suits a certain data set best in some metric. To have each
lab, for example, test a different frame, each lab must be either initialized correctly. This can be
done by referencing each lab directly by using code as in Listing 5.

Listing 5: spmd full example

1 % Get number of labs
2 nlabs = matlabpool('size');
3

4 % Generate test frames
5 for ii = 1:nlabs
6 frames to test{ii} = randn(3,3+ii);
7 end
8

9 % Partition data (frames)
10 for labindex = 1:nlabs
11 frame i = frames to test{labindex};
12 n samples = 1000;
13 end
14

15 % Test frames
16 spmd
17 data mat = randn(size(frame i, 1), n samples);
18 gram mat = frame i.'*frame i;
19 coefs mat = gram mat\(frame i.'*data mat);
20 mean l1 = mean(sum(abs(coefs mat)));
21 end
22

23 % Collect results
24 for ii = 1:nlabs
25 mean l1 full(ii) = mean l1{ii};
26 end

Listing 5 shows the extension of 4 into a full test. The second line creates a variable nlabs

using matlabpool, which stores the number of labs (workers) currently open. Lines 5-7 generate
the sample frames that will be used in each lab. Note that the sizes no NOT have to match
(quite useful!). Lines 10-13 initialize these frames, setting the variable frame i in each lab. This
is accomplished by using the indexing variable labindex, which cycles through the labs, setting
variables for a different lab at every iteration. MATLAB automatically differentiates the labindex

5

index and executes the code appropriately. Note that the number of samples to test (n samples) set
here may also differ (as does the size of frame i, but it would be silly to compare different numbers
of trials in this situation. When keeping this value the same for each lab, this variable can also be
set later, in the spmd block, to the same effect. Lines 16 - 21 actually test each frame using the spmd
command. The testing data, data mat is set randomly for each lab, and the pseudo-inverse is used
to find the coefficients of that data in that frame (coef mat. The metric being tested here is the
average `1 norm, ‖x‖1 =

∑
i |x[i]| ,which is associated with sparsity. How MATLAB actually deals

with the variables that exist in different labs (the results of the spmd block, is to reference them in
what is called a ‘composite object’. The results of each lab can be referenced by the main script by
indexing exactly as a cell array. An example is the last 3 lines (24 - 26) of Listing 5, which collects
the results of each lab into one vector, which can be then analyzed by the main script easily.

The mix od using labindex and spmd mixed with if-else statements can be quite a powerful
tool in parallelizing more than just identical code, but further development of these concepts is left
up to the creativity of the programmer (you).

2.2 Creating and Submitting Jobs

The most general method for performing parallel computation, or computations at all for that
matter, on a cluster is to submit jobs to the scheduler. Since MATLAB can interface with many
schedulers aside from it’s own, the option for opening an interactive MATLAB pool is not always
available. Thus submitting a neatly packaged job to the cluster will allow the active scheduler to
hand off your program to an isolated set of MATLAB workers as fits with its protocol.

Submitting a job to a cluster can be accomplished in 3 steps, with an optional 4th step of
retrieving the data from the completed job. The first step is to create a job. The job has basic
descriptions such as the name of the job (necessary for tracking the status and retrieving the
results), the type of job (regular, parallel, etc.), and information regarding where to save data
within the job if necessary.

There are three basic types of jobs: jobs, parallel jobs and MATLAB pool jobs. Jobs are the
basic unit, so to speak, and execute code on one worker for the duration of the job. Parallel jobs
utilize multiple cores, but essentially run the same code with different random seeds. This can
be useful for simulating the same code with multiple random inputs, for example to test denoising
algorithms or adaptive filter schemes on random inputs. MATLAB pool jobs are the most versatile,
as they perform any distributed code on a specified number of workers. Thus code using spmd or
parfor loops should be run on MATLAB pool jobs.

To create a job, simply use the appropriate command:

Regular Job job reg = createJob()

Parallel Job job par = createParallelJob()

MATLAB Pool Job job pool = createMatlabPoolJob()

Table 1: Job Creation Functions

The only input the job creation function needs is the scheduler information, which is returned
from the command findResource(), as shown in Listing 6.

Once the job handle is created, the properties can be edited by either using the set() command
or by directly setting that . An example of each scheme is given in the example code in Listing

6

6. For a more complete of job properties to set, please refer to the MATLAB documentation (doc
job in the command prompt).

The next step is to specify any tasks to be performed within the job. Any number of tasks can
be performed in the job. The benefit of stringing multiple tasks within one job is that for most
schedulers, a MATLAB worker pool is started for each job, but maintained open until completion of
said job. Thus assigning multiple tasks instead of submitting more jobs saves time on the overhead
of starting MATLAB. The function to create a task for a job is createTask(). The basic inputs
into createTask() are the job handle for the associated job, the handle to the function (m-file)
that the task should run, the number of outputs to return from that function, and the parameters
to pass to the function. An example is shown in Listing 6.

Once a Job has been created with all its tasks, submitting the job to the cluster can be accom-
plished by passing the job handle to the submit command: submit(job handle). The submit()

function does not need any other inputs.
If the job saves the results internally and does not need to return any results, then the submit

function is the last function that needs to be used. Otherwise, once the job has been submitted, it
needs to be let run to completion for the outputs to be completed. The waitForState() functions
pauses the script and waits for the data to be ready. waitForState() needs as a minimum the job
handle to know what job to wait for, and the state for which to wait until. To wait for completion,
the corresponding state is ‘finished’. waitForState() can also wait for ‘running’ or ‘queued’
id desired. The third possible option to pass waitForState() is a timeout variable. The timeout
option gives a maximum time (in seconds) that the script will wait for the job. In this case an
output can be defined for waitForState(), allowing the script to check if the program completed
successfully.

Listing 6 shows an example of creating, running and retrieving the outputs of a MATLAB
pool job. In this case, the script @randtest takes four inputs, a data matrix, a “basis ” (or more
technically correct a frame), a λ value and a tolerance value. @randtest then learns a basis for
the data in the data matrix, starting as the input basis, according to the algorithm outlined by
Olshausen and Field [1]. There are two outputs, the final basis that was learned, and the time it
took to perform the algorithm. Not shown here is the initialization of the basis (essentially randn()

with appropriate size and normalization of the columns) and the data loading (can be just three
dimensional array of natural images available at http://redwood.berkeley.edu/bruno/sparsenet/)

In Listing 6, line 7 finds the scheduler associated with the MATLAB instance. Lines 10-13 set
up the job. In this case only the name, and min/max number of workers were specified. Only
one task was set up in lines 16-17. The job is let run for a maximum time of one hour and upon
successful completion, the outputs are collected at line 34.

Listing 6: Matlab Pool Job Example

1

2 %%%%%%%%%%%%%%%%%%%%%%%%
3 %% Example for creating and submitting a Parallel Job
4

5 %% Get the schedualer
6

7 sched = FindResource();
8

9 % Create the matlabpool job

7

10 job mpool = createMatlabPoolJob(sched);
11 job mpool.Name = 'TestJob';
12 set(job mpool,'MinimumNumberOfWorkers',3);
13 set(job mpool,'MaximumNumberOfWorkers',3);
14

15 % Create tasks − in this case only one
16 iparam = {data, basis mat, 0.02, 0.001};
17 taskLSM(1) = createTask(job mpool, @randtest, 2, iparam);
18

19 % submit the job
20 submit(job mpool);
21

22 % Wait one hour for the end of the job
23 timeout time = 60*60;
24 return state = waitForState(job mpool, 'finished', timeout time);
25

26 % Check if the job finished or timed out
27 if return state ˜= 1
28 % Keep it clean
29 destroy(job mpool)
30 % Err out
31 error('The job failed!')
32 else
33 % get the outputs
34 t outs = getAllOutputArguments(job mpool);
35

36 % Keep it clean
37 destroy(job mpool)
38 end

3 Using the Neurolab Cluster

3.1 Setup

The following prerequisites are needed to use MATLAB on the NeuroCluster:

� MATLAB R2009b with the GT license and the Parallel Computing Toolbox installed

� You are hardwired (i.e. via a ethernet cable) to the Neuro network

� You have patience

3.2 Configuring MATLAB

The following steps will configure MATLAB to be able to run jobs on the NeuroCluster:

1. Start your MATLAB client GUI

2. Run the following code (Listing 7 - you may want to put this in your startup.m file):

Listing 7: PCTconfig File

8

1 disp('Running startup.m');
2 MyExternalIP=cell2mat(regexp(urlread('http://checkip.dyndns.org'),...
3 '(\d+)(\.\d+){3}','match'));
4 pctconfig('hostname',MyExternalIP);
5 disp('Startup.m complete.');

3. From the Parallel menu choose Manage Configurations.

4. In the Configurations Manager, choose: File-¿New-¿jobmanager

5. Configure the Job manager hostname (brain.neuro.gatech.edu) and Job manager name (Neu-
roCluster) as shown in Figure 1 (use brain.neuro.gatech.edu instead of vm1.neuro.gatech.edu).
Click OK.

6. Choose NeuroCluster as the default configuration in the Configurations Manager (see Figure
2).

Figure 1: Job Manager Configuration Properties

9

Figure 2: Configurations Manager

3.3 Testing the Configuration

Simple playback

You’re almost there. To validate the setup, click the ”Start Validation” button in the lower right
hand corner of the configurations manager. If everything is setup correctly you should see 4 green
checkmarks appear. To view all the labs, run the following script (Listing 8) on the command line:

Listing 8: MATLAB pool test

1 matlabpool 4
2 spmd
3 pause(labindex);
4 disp(labindex);
5 end
6 matlabpool close

10

Benchmarking Speedup

Now let’s see how the cluster performance scales with additional workers for an embarrassingly
parallel job. This code uses pctdemo task blackjack. Run dbtype pctdemo task blackjack to
see what’s happening behind the curtain. In this case, the speedup can be seen in Figure 3 to be
fairly linear

Listing 9: pctdemo aux parforbench.m

1 function S = pctdemo aux parforbench(numHands, numPlayers, n)
2 %PCTDEMO AUX PARFORBENCH Use parfor to play blackjack.
3 % S = pctdemo aux parforbench(numHands, numPlayers, n) plays
4 % numHands hands of blackjack numPlayers times, and uses no
5 % more than n MATLAB(R) workers for the computations.
6

7 % Copyright 2007−2009 The MathWorks, Inc.
8 S = zeros(numHands, numPlayers);
9 parfor (i = 1:numPlayers, n)

10 S(:, i) = pctdemo task blackjack(numHands, 1);
11 end

Listing 10: pctdemo aux parforbench.m test script

1 %http://www.mathworks.com/products/parallel−computing/demos.html
2

3 %http://www.mathworks.com/products/parallel−computing/demos.html?file=/prod
4 %ucts/demos/shipping/distcomp/paralleldemo parfor bench.html
5

6 % modified by Dustin Li, 04/20/2010
7

8 poolSize = matlabpool('size');
9 if poolSize == 0

10 error('distcomp:demo:poolClosed', ...
11 'This demo needs an open MATLAB pool to run.');
12 end
13

14 % parallelize this task
15 numHands = 500;
16 numPlayers = 6;
17 fprintf('Simulating each player playing %d hands of blackjack.\n', numHands);
18 t1 = zeros(1, poolSize);
19 for n = 1:poolSize
20 tic;
21 pctdemo aux parforbench(numHands, n*numPlayers, n);
22 t1(n) = toc;
23 fprintf('%d workers simulated %d players in %3.2f seconds.\n', ...
24 n, n*numPlayers, t1(n));
25 end
26

27 % make sure we aren't be limited by communication overhead
28 tic;
29 pctdemo aux parforbench(numHands, 10*numPlayers, 1);
30 clusterToc = toc;

11

31 fprintf('1 cluster workers simulated %d players in %3.2f seconds.\n', ...
32 10*numPlayers, clusterToc);
33

34 % sequential loop
35 % tic;
36 % parfor z = 0
37 % S = zeros(numHands, numPlayers);
38 % for i = 1:numPlayers
39 % S(:, i) = pctdemo task blackjack(numHands, 1);
40 % end
41 % end
42 % t1(1) = toc;
43 % fprintf('Ran in %3.2f seconds using a sequential for−loop.\n', t1(1));
44

45 tic;
46 S = zeros(numHands, 60);
47 for i = 1:60
48 S(:, i) = pctdemo task blackjack(numHands, 1);
49 end
50 localToc = toc;
51 fprintf('1 local worker simulated 60 players in %3.2f seconds.\n', localToc);
52 disp('(Old cluster: 1 worker, 60 players, 11.89 seconds.)');
53

54 speedup = (1:poolSize).*t1(1)./t1;
55 fig = pctdemo setup blackjack(1.0);
56 set(fig, 'Visible', 'on');
57 ax = axes('parent', fig);
58 x = plot(ax, 1:poolSize, 1:poolSize, '−−', ...
59 1:poolSize, speedup, 's', 'MarkerFaceColor', 'b');
60 t = get(ax, 'XTick');
61 t(t ˜= round(t)) = []; % Remove all non−integer x−axis ticks.
62 set(ax, 'XTick', t);
63 legend(x, 'Linear Speedup', 'Measured Speedup', 'Location', 'NorthWest');
64 xlabel(ax, 'Number of MATLAB workers participating in computations');
65 ylabel(ax, 'Speedup');
66

67 %%
68 % now plot single thread results
69 figure(2);
70 bar([7.37 localToc 11.89]);
71 set(gca,'XTickLabel',{'New cluster','Local','Old cluster'});
72 ylabel('Execution time (s)');
73 title('Single threaded performance');
74 set(gcf, 'Name', 'Single threaded performance');

Listing 11: Example output for test script

1 Simulating each player playing 500 hands of blackjack.
2 1 workers simulated 6 players in 0.93 seconds.
3 2 workers simulated 12 players in 0.93 seconds.
4 3 workers simulated 18 players in 0.95 seconds.
5 4 workers simulated 24 players in 1.35 seconds.
6 5 workers simulated 30 players in 1.06 seconds.
7 6 workers simulated 36 players in 0.97 seconds.
8 7 workers simulated 42 players in 1.01 seconds.

12

9 8 workers simulated 48 players in 1.03 seconds.
10 9 workers simulated 54 players in 1.05 seconds.
11 10 workers simulated 60 players in 1.78 seconds.
12 1 cluster workers simulated 60 players in 8.77 seconds.
13 1 local worker simulated 60 players in 10.86 seconds.
14 (Old cluster: 1 worker, 60 players, 11.89 seconds.)

Figure 3: Benchmarking the performance increase

Performance

Compared to the old cluster, sequential performance should also be much higher. The new cluster
runs 64-bit Ubuntu Linux on MATLAB r2009b, instead of Mac OS X 10.4 on MATLAB r2008a.
This particular code yields a 38% speedup!

Listing 12: Test script on the old cluster

1 >> for n=1
2 tic;
3 pctdemo task blackjack(5000,1);
4 toc
5 end
6 Elapsed time is 1.984382 seconds.

13

Listing 13: Test script on the new cluster

1 >> for n=1
2 tic;
3 pctdemo task blackjack(5000,1);
4 toc
5 end
6 Elapsed time is 1.228749 seconds.

Figure 4: Comparison of speedup with respect to the old MAC OS cluster

Caveats

� At this time, the NeuroCluster is quite finicky with connections outside of the Neuro network
(i.e. it’s usually not as simple as VPNing into the Neuro net). For external connections, it
may be necessary to run this script as a startup file in MATLAB:

Listing 14: Dustin’s setup

1 % Dustin's startup.m
2 % 02/2010
3 disp('Running startup.m');
4 MyExternalIP=urlread('http://ip.dustin.li/');
5 pctconfig('hostname',MyExternalIP);
6 disp('Startup.m complete.');

14

� There also seems to be a problem if you’re behind certain NATs, even if DMZ is set up
appropriately. I had a problem with a Netgear RP614 v3 wired to the Neuro network.

� Occasionally, the cluster will get stuck, and not start new jobs even when there are idle nodes.
findResource may show that there are finished jobs, pending jobs, but no running jobs. In
this case, use admincenter to stop and resume each worker.

4 Further information

See the MATLAB documentation for further information. This is a good place to start:

1 doc distcomp

Appendices

A Useful Functions

Table 2: Useful MATLAB Functions
Function Name Brief Description

findResource Gets detailed information about the scheduler and
any jobs/tasks that have been submitted

createJob Create a job object

createParallelJob Create a parallel job

createMatlabPoolJob Create a job that uses a matlab pool

createTask Create a task within a job

submit Submit a job to the scheduler

matlabpool Open, close or check the status of the MATLAB pool

References

[1] B. A. Olshausen and D.A. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311–3325, 1997.

15

