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PREFACE TO THE
FIRST EDITION

TO THE STUDENT

Welcome!

You are about to embark on the study of a fascinating and important subject:
the theory of computation. It comprises the fundamental mathematical proper-
ties of computer hardware, software, and certain applications thereof. In study-
ing this subject we seek to determine what can and cannot be computed, how
quickly, with how much memory, and on which type of computational model.
The subject has obvious connections with engineering practice, and, as in many
sciences, it also has purely philosophical aspects.

I know that many of you are looking forward to studying this material but
some may not be here out of choice. You may want to obtain a degree in com-
puter science or engineering, and a course in theory is required-God knows
why. After all, isn't theory arcane, boring, and worst of all, irrelevant?

To see that theory is neither arcane nor boring, but instead quite understand-
able and even interesting, read on. Theoretical computer science does have
many fascinating big ideas, but it also has many small and sometimes dull details
that can be tiresome. Learning any new subject is hard work, but it becomes
easier and more enjoyable if the subject is properly presented. My primary ob-
jective in writing this book is to expose you to the genuinely exciting aspects of
computer theory, without getting bogged down in the drudgery. Of course, the
only way to determine whether theory interests you is to try learning it.

xi



Xii PREFACE TO THE FIRST EDITION

Theory is relevant to practice. It provides conceptual tools that practition-
ers use in computer engineering. Designing a new programming language for a
specialized application? What you learned about grammars in this course comes
in handy. Dealing with string searching and pattern matching? Rememberfinite
automata and regular expressions. Confronted with a problem that seems to re-
quire more computer time than you can afford? Think back to what you learned
about NP-completeness. Various application areas, such as modern cryptographic
protocols, rely on theoretical principles that you will learn here.

Theory also is relevant to you because it shows you a new, simpler, and more
elegant side of computers, which we normally consider to be complicated ma-
chines. The best computer designs and applications are conceived with elegance
in mind. A theoretical course can heighten your aesthetic sense and help you
build more beautiful systems.

Finally, theory is good for you because studying it expands your mind. Com-
puter technology changes quickly. Specific technical knowledge, though useful
today, becomes outdated in just a few years. Consider instead the abilities to
think, to express yourself clearly and precisely, to solve problems, and to know
when you haven't solved a problem. These abilities have lasting value. Studying
theory trains you in these areas.

Practical considerations aside, nearly everyone working with computers is cu-
rious about these amazing creations, their capabilities, and their limitations. A
whole new branch of mathematics has grown up in the past 30 years to answer
certain basic questions. Here's a big one that remains unsolved: If I give you a
large number, say, with 500 digits, can you find its factors (the numbers that di-
vide it evenly), in a reasonable amount of time? Even using a supercomputer, no
one presently knows how to do that in all cases within the lifetime of the universe!
The factoring problem is connected to certain secret codes in modern cryptosys-
tems. Find a fast way to factor and fame is yours!

TO THE EDUCATOR

This book is intended as an upper-level undergraduate or introductory gradu-
ate text in computer science theory. It contains a mathematical treatment of
the subject, designed around theorems and proofs. I have made some effort to
accommodate students with little prior experience in proving theorems, though
more experienced students will have an easier time.

My primary goal in presenting the material has been to make it clear and
interesting. In so doing, I have emphasized intuition and "the big picture" in the
subject over some lower level details.

For example, even though I present the method of proof by induction in
Chapter 0 along with other mathematical preliminaries, it doesn't play an im-
portant role subsequently. Generally I do not present the usual induction proofs
of the correctness of various constructions concerning automata. If presented
clearly, these constructions convince and do not need further argument. An in-
duction may confuse rather than enlighten because induction itself is a rather
sophisticated technique that many find mysterious. Belaboring the obvious with
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an induction risks teaching students that mathematical proof is a formal manip-
ulation instead of teaching them what is and what is not a cogent argument.

A second example occurs in Parts Two and Three, where I describe algorithms
in prose instead of pseudocode. I don't spend much time programming Turing
machines (or any other formal model). Students today come with a program-
ming background and find the Church-Turing thesis to be self-evident. Hence
I don't present lengthy simulations of one model by another to establish their
equivalence.

Besides giving extra intuition and suppressing some details, I give what might
be called a classical presentation of the subject material. Most theorists will find
the choice of material, terminology, and order of presentation consistent with
that of other widely used textbooks. I have introduced original terminology in
only a few places, when I found the standard terminology particularly obscure
or confusing. For example I introduce the term mapping reducibility instead of
many-one reducibility.

Practice through solving problems is essential to learning any mathemati-
cal subject. In this book, the problems are organized into two main categories
called Exercises and Problems. The Exercises review definitions and concepts.
The Problems require some ingenuity. Problems marked with a star are more
difficult. I have tried to make both the Exercises and Problems interesting chal-
lenges.

THE FIRST EDITION

Introduction to the Theory of Computation first appeared as a Preliminary Edition
in paperback. The first edition differs from the Preliminary Edition in several
substantial ways. The final three chapters are new: Chapter 8 on space complex-
ity; Chapter 9 on provable intractability; and Chapter 10 on advanced topics in
complexity theory. Chapter 6 was expanded to include several advanced topics
in computability theory. Other chapters were improved through the inclusion
of additional examples and exercises.

Comments from instructors and students who used the Preliminary Edition
were helpful in polishing Chapters 0-7. Of course, the errors they reported have
been corrected in this edition.

Chapters 6 and 10 give a survey of several more advanced topics in com-
putability and complexity theories. They are not intended to comprise a cohesive
unit in the way that the remaining chapters are. These chapters are included to
allow the instructor to select optional topics that may be of interest to the serious
student. The topics themselves range widely. Some, such as Turing reducibility
and alternation, are direct extensions of other concepts in the book. Others, such
as decidable logical theories and cryptography, are brief introductions to large fields.

FEEDBACK TO THE AUTHOR

The internet provides new opportunities for interaction between authors and
readers. I have received much e-mail offering suggestions, praise, and criticism,
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and reporting errors for the Preliminary Edition. Please continue to correspond!
I try to respond to each message personally, as time permits. The e-mail address
for correspondence related to this book is

sipserbookfmath.mit.edu.

A web site that contains a list of errata is maintained. Other material may be
added to that site to assist instructors and students. Let me know what you
would like to see there. The location for that site is

http://www-math.mit.edu/-sipser/book.html.
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Judging from the email communications that I've received from so many of you,
the biggest deficiency of the first edition is that it provides no sample solutions
to any of the problems. So here they are. Every chapter now contains a new
Selected Solutions section that gives answers to a representative cross-section of
that chapter's exercises and problems. To make up for the loss of the solved
problems as interesting homework challenges, I've also added a variety of new
problems. Instructors may request an Instructor's Manual that contains addi-
tional solutions by contacting the sales representative for their region designated
at www. course. comn.

A number of readers would have liked more coverage of certain "standard"
topics, particularly the Myhill-Nerode Theorem and Rice's Theorem. I've par-
tially accommodated these readers by developing these topics in the solved prob-
lems. I did not include the Myhill-Nerode Theorem in the main body of the text
because I believe that this course should provide only an introduction to finite
automata and not a deep investigation. In my view, the role of finite automata
here is for students to explore a simple formal model of computation as a prelude
to more powerful models, and to provide convenient examples for subsequent
topics. Of course, some people would prefer a more thorough treatment, while
others feel that I ought to omit all reference to (or at least dependence on) finite
automata. I did not include Rice's Theorem in the main body of the text be-
cause, though it can be a useful "tool" for proving undecidability, some students
might use it mechanically without really understanding what is going on. Using

xvii
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Pk. we know that

Pk+1 = PkM- Y

Therefore, using the induction hypothesis to calculate Pk,

Multi g Pkl =[PM ( M I )] Y.

Multiplying through by At and rewriting Y yields

Pk+1 = PM'~" - Y (M IM (M-

= pMk+l _ y (mk+l -I)

Thus the formula is correct for t = k + 1, which proves the theorem.
........................................................................................................................................................................

Problem 0.14 asks you to use the preceding formula to calculate actual mort-
gage payments.

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain. Write a short informal English description of each set.

a. {1,3,5,7, ... }
b. {..., -4, -2,0,2,4,...}

c. {nj n = 2m for some m in AN}
d. {nj n = 2m for some m in XA, and n = 3k for some k in AV}

e. {wl w is a string of Os and is and w equals the reverse of w}

f. {nj n is an integer and n = n + 1}

0.2 Write formal descriptions of the following sets

a. The set containing the numbers 1, 10, and 100

b. The set containing all integers that are greater than 5

c. The set containing all natural numbers that are less than 5

d. The set containing the string aba

e. The set containing the empty string

f. The set containing nothing at all



26 CHAPTER 0/ INTRODUCTION

0.3 Let A be the set {x, y, z} and B be the set {x, y}.

a. Is A a subset of B?

b. Is B a subset of A?

c. What is A U B?

d. WhatisA nB?

e. What is A x B?

f What is the power set of B?

0.4 If A has a elements and B has b elements, how many elements are in A x B?
Explain your answer.

0.5 If C is a set with c elements, how many elements are in the power set of C? Explain
your answer.

0.6 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. The unary function
f: X- Y and the binary function g: X x Y- Y are described in the following
tables.

n f(n) g 6 7 8 9 10
1 6 1 10 10 10 10 10
2 7 2 7 8 9 10 6
3 6 3 7 7 8 8 9
4 7 4 9 8 7 6 10
5 6 5 6 6 6 6 6

a. What is the value of f (2)?

b. What are the range and domain off?

c. What is the value of g(2, 10)?

d. What are the range and domain of g?

e. What is the value ofg(4, f(4))?

0.7 For each part, give a relation that satisfies the condition.

a. Reflexive and symmetric but not transitive

b. Reflexive and transitive but not symmetric

c. Symmetric and transitive but not reflexive

0.8 Consider the undirected graph G= (V, E) where V, the set of nodes, is {1, 2,3, 4}
and E, the set of edges, is {{1,2}, {2,3}, {1,3}, {2,4}, {1,4}}. Draw the
graph G. What is the degree of node 1? of node 3? Indicate a path from node
3 to node 4 on your drawing of G.
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0.9 Write a formal description of the following graph.

PROBLEMS

0.10 Find the error in the following proof that 2 = 1.
Consider the equation a = b. Multiply both sides by a to obtain a2  ab. Subtract
b2 from both sides to get a2 - b2 = ab -b 2 . Now factor each side, (a + b) (a -b) =
b(a -b), and divide each side by (a -b), to get a + b = b. Finally, let a and b
equal 1, which shows that 2 = 1.

0.11 Find the error in the following proof that all horses are the same color.
CLAIM: In any set of h horses, all horses are the same color.
PROOF: By induction on h.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the
same color.

Induction step: For k > I assume that the claim is true for h = k and prove that
it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses
in this set are the same color. Remove one horse from this set to obtain the set H1
with just k horses. By the induction hypothesis, all the horses in H, are the same
color. Now replace the removed horse and remove a different one to obtain the set
H2 . By the same argument, all the horses in H2 are the same color. Therefore all
the horses in H must be the same color, and the proof is complete.

0.12 Show that every graph with 2 or more nodes contains two nodes that have equal
degrees.

A*0. 13 Ramsey's theorem. Let G be a graph. A clique in G is a subgraph in which every
two nodes are connected by an edge. An anti-clique, also called an independent
set, is a subgraph in which every two nodes are not connected by an edge. Show
that every graph with n nodes contains either a clique or an anti-clique with at least
2' log2 n nodes.
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AO. 1 4 Use Theorem 0.25 to derive a formula for calculating the size of the monthly pay-
ment for a mortgage in terms of the principal P, interest rate I, and the number
of payments t. Assume that, after t payments have been made, the loan amount is
reduced to 0. Use the formula to calculate the dollar amount of each monthly pay-
ment for a 3 0-year mortgage with 3 60 monthly payments on an initial loan amount
of $100,000 with a 5% annual interest rate.

SELECTED SOLUTIONS

0.13 Make space for two piles of nodes, A and B. Then, starting with the entire graph,
repeatedly add each remaining node x to A if its degree is greater than one half the
number of remaining nodes and to B otherwise, and discard all nodes to which x
isn't (is) connected if it was added to A (B). Continue until no nodes are left. At
most half of the nodes are discarded at each of these steps, so at least log2 n steps
will occur before the process terminates. Each step adds a node to one of the piles,
so one of the piles ends up with at least 2 log2 n nodes. The A pile contains the
nodes of a clique and the B pile contains the nodes of an anti-clique.

0.14 We let Pt = 0 and solve for Y to get the formula: Y = PMt(MJ - 1)/(M' - 1).
For P = $100, 000, I = 0.05, and t = 360 we have M = 1 + (0.05)/12. We use a
calculator to find that Y $536.82 is the monthly payment.
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EXERCISES

A1 .1 The following are the state diagrams of two DFAs, M1 and M2 . Answer the follow-
ing questions about each of these machines.

bb

b b

a

Ml M2

a. What is the start state?

b. What is the set of accept states?

c. What sequence of states does the machine go through on input aabb?

d. Does the machine accept the string aabb?

e. Does the machine accept the string e?

Al .2 Give the formal description of the machines M1 and M2 pictured in Exercise 1.1.

1.3 The formal description of a DFA M is ({ql,q2,q3,q4,q5},{u,d},6,q3,{q3}),

where 3 is given by the following table. Give the state diagram of this machine.

u d
q1 qi q2

q2 qi q3

q3 q2 q4

q4 q3 q5

q5 q4 q5

1.4 Each of the following languages is the intersection of two simpler languages. In
each part, construct DFAs for the simpler languages, then combine them using the
construction discussed in footnote 3 (page 46) to give the state diagram of a DFA
for the language given. In all parts Z = {a, b}.

a. {wj en has at least three a's and at least two b's}

Ab. {wI w has at exactly two a's and at least two b's}

c. {fwl w has an even number of a's and one or two b's}

Ad. {wl w has an even number of a's and each a is followed by at least one b}

e. {w I w has an even number of a's and one or two b's}

f. {wI in has an odd number of a's and ends with a b}

g. {w I w has even length and an odd number of a's}
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1.5 Each of the following languages is the complement of a simpler language. In each
part, construct a DFA for the simpler language, then use it to give the state diagram
of a DFA for the language given. In all parts E = {a, b}.

Aa. {wl w does not contain the substring ab}

Ab. {wl w does not contain the substring baba}

c. {wl w contains neither the substrings ab nor ba}

d. {w| w is any string not in a*b* }

e. {w| w is any string not in (ab+)*1

f. {w| w is any string not in a* U b}

g. { w w is any string that doesn't contain exactly two a's}

h. {wI w is any string except a and b}

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts the
alphabet is {0,1 }

a. {wI w begins with a 1 and ends with a }

b. {wl w contains at least three 1s}

c. {wl w contains the substring 0101, i.e., w = xOiOiy for some xr and y}

d. {w I w has length at least 3 and its third symbol is a 0}

e. {wl wi starts with 0 and has odd length, or starts with 1 and has even length}

f {wI wi doesn't contain the substring 1101

g. {uw the length of w is at most 5}

h. {wl w is any string except 11 and 1111

i. {wj every odd position of w is a ll

j. {w I w contains at least two Os and at most one 11

k. {s, 0}

1. {w I w contains an even number of Os, or contains exactly two ls}

m. The empty set

n. All strings except the empty string

1.7 Give state diagrams of NFAs with the specified number of states recognizing each
of the following languages. In all parts the alphabet is {0,1}.

Aa. The language {w I w ends with 001 with three states

b. The language of Exercise 1.6c with five states

c. The language of Exercise 1.61 with six states

d. The language {O} with two states

e. The language 0*1 * O+ with three states

Af The language 1*(001+)* with three states

g. The language {e} with one state

h. The language O* with one state

1.8 Use the construction given in the proof of Theorem 1.45 to give the state diagrams
of NFAs recognizing the union of the languages described in

a. Exercises 1.6a and 1.6b.

b. Exercises 1.6c and 1.6f.

84
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1.9 Use the construction given in the proof of Theorem 1.47 to give the state diagrams
of NFAs recognizing the concatenation of the languages described in

a. Exercises 1.6g and 1.6i.

b. Exercises 1.6b and 1.6m.

1.10 Use the construction given in the proof of Theorem 1.49 to give the state diagrams
of NFAs recognizing the star of the language described in

a. Exercise 1.6b.

b. Exercise 1.6j.

c. Exercise 1.6m.

A 1.11 Prove that every N FA can be converted to an equivalent one that has a single accept
state.

1.12 Let D {wI w contains an even number of a's and an odd number of b's and does
not contain the substring ab}. Give a DFA with five states that recognizes D and a
regular expression that generates D. (Suggestion: Describe D more simply.)

1.13 Let F be the language of all strings over {0,1} that do not contain a pair of is that
are separated by an odd number of symbols. Give the state diagram of a DFA with
5 states that recognizes F. (You may find it helpful first to find a 4-state NFA for
the complement of F.)

1.14 a. Show that, if M is a DFA that recognizes language B, swapping the accept
and nonaccept states in M yields a new DFA that recognizes the complement
of B. Conclude that the class of regular languages is closed under comple-
ment.

b. Show by giving an example that, if M is an NFA that recognizes language
C, swapping the accept and nonaccept states in M doesn't necessarily yield
a new NFA that recognizes the complement of C. Is the class of languages
recognized by NFAs closed under complement? Explain your answer.

1.15 Give a counterexample to show that the following construction fails to prove The-
orem 1.49, the closure of the class of regular languages under the star operation.8

Let N1 = (Qj, E, 61, qj, F1 ) recognize Al. Construct N = (Qj, E, 6, qj, F) as
follows. N is supposed to recognize A*.

a. The states of N are the states of N1.

b. The start state of N is the same as the start state of N1 .

c. F ={q}UF,.
The accept states F are the old accept states plus its start state.

d. Define 6 so that for any q C Q and any a C E,

f61(q,a) q Fora &

(q a) d(q, a) U {qj} q (E F, and a = e.

(Suggestion: Show this construction graphically, as in Figure 1.50.)

81n other words, you must present a finite automaton, N 1, for which the constructed
automaton N does not recognize the star of N1 's language.
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1.16 Use the construction given in Theorem 1.39 to convert the following two nonde-
terministic finite automata to equivalent deterministic finite automata.

(a) (b)

1.17 a. Give an NFA recognizing the language (01 U O00 U 010)*.

b. Convert this NFA to an equivalent DFA. Give only the portion of the DFA
that is reachable from the start state.

1.18 Give regular expressions generating the languages of Exercise 1.6.

1.19 Use the procedure described in Lemma 1.55 to convert the following regular ex-
pressions to nondeterministic finite automata.

a. (0 U 1)*000(0 U 1)*

b. (((00)*(11)) U 01)*

C. 0*

1.20 For each of the following languages, give two strings that are members and two
strings that are not members-a total of four strings for each part. Assume the
alphabet E {a,b} in all parts.

a. asb* e. E*aE'b*aE*

b. a(ba)*b f. aba U bab

c. a* U b g. (e U a)b

d. (aaa)* h. (aUbaUbb)E*

1.21 Use the procedure described in Lemma 1.60 to convert the following finite au-
tomata to regular expressions.

a

b

(a) (b)
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1.22 In certain programming languages, comments appear between delimiters such as
/# and #/. Let C be the language of all valid delimited comment strings. A member
of C must begin with /# and end with #/ but have no intervening #V. For simplic-
ity, we'll say that the comments themselves are written with only the symbols a
and b; hence the alphabet of C is E = {a, b, /I #}.

a. Give a DFA that recognizes C.

b. Give a regular expression that generates C.

A1. 2 3 Let B be any language over the alphabet S. Prove that B = B* iff BB C B.

1.24 Afinite state transducer (FST) is a type of deterministic finite automaton whose
output is a string and not just accept or reject. The following are state diagrams of
finite state transducers T1 and T2 .

°l/O2/1a/O ai0/0 i/i
i/ 2/1 /0 /0

2 1q b/i q

0/0 a/i

T, T2

Each transition of an FST is labeled with two symbols, one designating the input
symbol for that transition and the other designating the output symbol. The two
symbols are written with a slash, /, separating them. In T1, the transition from
q1 to q2 has input symbol 2 and output symbol 1. Some transitions may have
multiple input-output pairs, such as the transition in T1 from q1 to itself. When
an FST computes on an input string w, it takes the input symbols WV. w, one by
one and, starting at the start state, follows the transitions by matching the input
labels with the sequence of symbols wi ... w, = w. Every time it goes along a
transition, it outputs the corresponding output symbol. For example, on input
2212011, machine T1 enters the sequence of states q1, q2, q2, q2, q2, q1, q1, q1 and
produces output 1111000. On input abbb, T2 outputs 1011. Give the sequence of
states entered and the output produced in each of the following parts.

a. T, on input 0il e. T2 on input b

b. Ti on input 211 f. T2 on input bbab

c. T, on input 121 g. T2 on input bbbbbb

d. T1 on input 0202 h. T2 on input e

1.25 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give a formal definition of this model, following the pattern in Definition 1.5
(page 3 5). Assume that an FST has an input alphabet E and an output alphabet r but
not a set of accept states. Include a formal definition of the computation of an FST.
(Hint: An FST is a 5-tuple. Its transition function is of the form 6: Q x e ~Q x F.)
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1.26 Using the solution you gave to Exercise 1.25, give a formal description of the ma-
chines T1 and T2 depicted in Exercise 1.24.

1.27 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give the state diagram of an FST with the following behavior. Its input and output
alphabets are {0,1}. Its output string is identical to the input string on the even
positions but inverted on the odd positions. For example, on input 0000111 it
should output 1010010.

1.28 Convert the following regular expressions to NFAs using the procedure given in
Theorem 1.54. In all parts E = {a, b}.

a. a(abb) * U b

b. a' U (ab)+

c. (a U bt )a'b'

1.29 Use the pumping lemma to show that the following languages are not regular.

Aa Al {0=10n2 | n > 0}

b. A2 = {wwwl w E {a,b}"}

Ac. A3 = {a2 61 n > 0} (Here, a2
" means a string of 2n a's.)

1.30 Describe the error in the following "proof" that 0* 1* is not a regular language. (An
error must exist because 0* 1* is regular.) The proof is by contradiction. Assume
that 0* 1* is regular. Let p be the pumping length for 0* 1* given by the pumping
lemma. Choose s to be the string OP P. You know that s is a member of 0* 1*, but
Example 1.73 shows that s cannot be pumped. Thus you have a contradiction. So
0' 1' is not regular.

PROBLEMS

1.31 For any string aw iWiW2 .W,,, the reverse of w, written wR, is the string w in
reverse order, Wn ... W2Wi1 . For any language A, let AR = {w'h w E A}.
Show that if A is regular, so is ARt.

1.32 Let

E3 contains all size 3 columns of Os and is. A string of symbols in E3 gives three
rows of Os and is. Consider each row to be a binary number and let

B = {w X 31I the bottom row of w is the sum of the top two rows}.

For example,

[O] [oB] [] e B, but [°] [B] X B.

Show that B is regular. (Hint: Working with BR is easier. You may assume the
result claimed in Problem 1.31.)
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1.33 Let

2 = 0[o [11], [o]:, [11]

Here, E2 contains all columns of Os and is of height two. A string of symbols in
E2 gives two rows of Os and is. Consider each row to be a binary number and let

C = f 2 I the bottom row of w is three times the top row}.

For example, [ [] [ [" ] [c] 6 C, but [ 1 ] [] [ 1 ] C. Show that C is regular.
(You may assume the result claimed in Problem 1.31.)

1.34 Let Z2 be the same as in Problem 1.33. Consider each row to be a binary number
and let

D = {w E E2 I the top row of w is a larger number than is the bottom row}.

For example, y [ [O]J [] [ ] E D, but [L] [ ] [1] [°] 0 D. ShowthatDis regular.
1.35 Let E2 be the same as in Problem 1.33. Consider the top and bottom rows to be

strings of Os and is and let

E = fw e E2 I the bottom row of w is the reverse of the top row of wl.

Show that E is not regular.

1.36 Let B, = {ak I where k is a multiple of n}. Show that for each n > 1, the language
B, is regular.

1.37 Let Ct = {jx r is a binary number that is a multiple of n}. Show that for each
n > 1, the language C. is regular.

1.38 An all-NFA Al is a 5-tuple (Q, Z, 6, qo, F) that accepts x G E* if every possible
state that M could be in after reading input x is a state from F. Note, in contrast,
that an ordinary NFA accepts a string if some state among these possible states is an
accept state. Prove that all-NFAs recognize the class of regular languages.

1.39 The construction in Theorem 1.54 shows that every GNFA is equivalent to a GNFA
with only two states. We can show that an opposite phenomenon occurs for DFAs.
Prove that for every k > I a language Ak C {o,i}* exists that is recognized by a
DFA with k states but not by one with only k - I states.

1.40 Say that string x is a prefix of string y if a string z exists where xz = y and that x
is a proper prefix of y if in addition x =$ y. In each of the following parts we define
an operation on a language A. Show that the class of regular languages is closed
under that operation.

Aa. NOPREFIX(A)= {w E AlnoproperprefixofwisamemberofA}.
b. NOEXTEND(A)= {w Al w is not the proper prefix of any string in A}.

1.41 For languages A and B, let the perfect sbuffle of A and B be the language

{wl w = aib. akbk, where a, ... ak E A and bi ... bk E B, each aj, bi e El

Show that the class of regular languages is closed under perfect shuffle.

1.42 For languages A and B, let the shuffle of A and B be the language

{wl w = albi ... akbk, where ai ... ak C A and bi ... bk E B, each aj, bi e CY}

Show that the class of regular languages is closed under shuffle.
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1.43 Let A be any language. Define DROP-OUT(A) to be the language containing all
strings that can be obtained by removing one symbol from a string in A. Thus,
DROP-OUT(A) ={rzl xzyz C A where x, z E E*, y E E}. Show that the class of
regular languages is closed under the DROP-OUT operation. Give both a proof
by picture and a more formal proof by construction as in Theorem 1.47.

A1 .44 Let B and C be languages over Y= {0. I}. Define

B C = {w E BI for some y e C, strings w and y contain equal numbers of is}.

Show that the class of regular languages is closed under the 2- operation.

*1.45 Let A/B = {wl wx E A for some x e B}. Show that if A is regular and B is any
language then A/B is regular.

1.46 Prove that the following languages are not regular. You may use the pumping
lemma and the closure of the class of regular languages under union, intersection,
and complement.

a. {OnmOnI m n > 0}

Ab. {001 |m:An}
c. {wI w E {0,1}* is not a palindrome}9

d. {wtwi wot £ {0,1}+}

1.47 Let E = {I, #} and let

Y = {wl W = #2#... #Xk for k > 0, each xi e l*, and xi :A xj for i 7 j.

Prove that Y is not regular.

1.48 Let E = {0,} and let

D = {wl w contains an equal number of occurrences of the substrings 01 and 10}.

Thus 101 C D because 101 contains a single 01 and a single 10, but 1010 , D
because 1010 contains two l0s and one 01. Show that D is a regular language.

1.49 a. Let B = { 5 y y c {0, I}* and y contains at least k is, for k > 1}.
Show that B is a regular language.

b. Let C = { 1 ky y E {0, 1}* and y contains at most k is, for k > 1}.
Show that C isn't a regular language.

A1 .50 Read the informal definition of the finite state transducer given in Exercise 1.24.
Prove that no FST can output wuv for every input w if the input and output alpha-
bets are {0,1j.

1.51 Let x and y be strings and let L be any language. We say that x and y are distin-
guishable by L if some string z exists whereby exactly one of the strings xz and yz
is a member of L; otherwise, for every string z, we have xz e L whenever yz e L
and we say that x and y are indistinguishable by L. If x and y are indistinguishable
by L we write x - L Y. Show that -L is an equivalence relation.

9Apalindrome is a string that reads the same forward and backward.



PROBLEMS 91

A*1. 52 Myhill-Nerode theorem. Refer to Problem 1.51. Let L be a language and let X
be a set of strings. Say that X is pairwise distinguishable by L if every two distinct
strings in X are distinguishable by L. Define the index of L to be the maximum
number of elements in any set that is pairwise distinguishable by L. The index of
L may be finite or infinite.

a. Show that, if L is recognized by a DFA with k states, L has index at most k.

b. Show that, if the index of L is a finite number k, it is recognized by a DFA
with k states.

c. Conclude that L is regular iff it has finite index. Moreover, its index is the
size of the smallest DFA recognizing it.

1.53 Let E = {0, 1, +, =} and

ADD = yx=y+zl x, y, z are binary integers, and x is the sum of y and z}.

Show that ADD is not regular.

1.54 Consider the language F = {a'bi c I i, j, k > D and if i = I then j = kJ.

a. Show that F is not regular.

b. Show that F acts like a regular language in the pumping lemma. In other
words, give a pumping length p and demonstrate that F satisfies the three
conditions of the pumping lemma for this value of p.

c. Explain why parts (a) and (b) do not contradict the pumping lemma.

1.55 The pumping lemma says that every regular language has a pumping length p, such
that every string in the language can be pumped if it has length p or more. If p is a
pumping length for language A, so is any length p' > p. The minimum pumping
length for A is the smallest p that is a pumping length for A. For example, if
A = 01*, the minimum pumping length is 2. The reason is that the string s = 0 is
in A and has length 1 yet s cannot be pumped, but any string in A of length 2 or
more contains a 1 and hence can be pumped by dividing it so that x = O. y = 1,
and z is the rest. For each of the following languages, give the minimum pumping
length and justify your answer.

Aa. 0001* f e
Ab. 0*1* g. 1*01*01*

c. 001 UO*1* h. 10(11*0)*0

Ad. 0*1+0+1* u 10*1 i. 1011

e. (01)* j. E*

* 1.56 If A is a set of natural numbers and k is a natural number greater than 1, let

Bk (A) = {w I w is the representation in base k of some number in Al.

Here, we do not allow leading Os in the representation of a number. For example,
B2 ({3, 5}) = {11, 101} and B3({3, 5}) = {10, 12}. Give an example of a set A for
which B2 (A) is regular but B3 (A) is not regular. Prove that your example works.
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*1.57 If A is any language, let A, be the set of all first halves of strings in A so that

A 1 - {x for some y, xJ = yJ and xy e A}.

Show that, if A is regular, then so is A 1

* 1.58 If A is any language, let A i - be the set of all strings in A with their middle thirds
removed so that

A l - { = {xzz for some y, IZx = -yI = IzI and xyz e A}.

Show that, if A is regular, then A 1 - is not necessarily regular.

* 1.59 Let M =(Q,,6,qo,F) be a DFA and let h be a state of Al called its "home".
A synchronizing sequence for M and h is a string s C E* where oi(q, s) = h for
every q e Q. (Here we have extended d to strings, so that 6(q, S) equals the state
where M ends up when M starts at state q and reads input s.) Say that M is
syncbronizable if it has a synchronizing sequence for some state h. Prove that, if
M is a k-state synchronizable DFA, then it has a synchronizing sequence of length
at most k3. Can you improve upon this bound?

1.60 Let = {a, b}. For each k > 1, let Ck be the language consisting of all strings
that contain an a exactly k places from the right-hand end. Thus Ck = E*a~k-1.

Describe an NFA with k + 1 states that recognizes Ck, both in terms of a state
diagram and a formal description.

1.61 Consider the languages Ck defined in Problem 1.60. Prove that for each k, no DFA
can recognize Ck with fewer than 2k states.

1.62 Let E = {a, b}. For each k > 1, let Dk be the language consisting of all strings
that have at least one a among the last k symbols. Thus Dk = E*a(E U E)5

Describe an DFA with at most k + 1 states that recognizes Dk, both in terms of a
state diagram and a formal description.

1.63 a. Let A be an infinite regular language. Prove that A can be split into two
infinite disjoint regular subsets.

b. Let B and D be two languages. Write B c- D if B C D and D contains
infinitely many strings that are not in B. Show that, if B and D are two
regular languages where B ca D, then we can find a regular language C
where B c C c D.

1.64 Let N be an NFA with k states that recognizes some language A.

a. Show that, if A is nonempty, A contains some string of length at most k.

b. Show that, by giving an example, that part (a) is not necessarily true if you
replace both A's by A.

c. Show that, if A is nonempty, A contains some string of length at most 2k

d. Show that the bound given in part (b) is nearly tight; that is, for each k,
demonstrate an NFA recognizing a language Ak where Ak is nonempty and
where Wk's shortest member strings are of length exponential in k. Come as
close to the bound in (b) as you can.
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'1.65 Prove that, for each n > 0, a language B, exists where

a. B, is recognizable by a NFA that has n states, and

b. if B, = A1 U U. uAk, for regular languages Ai, then at least one of the Ai
requires a DFA with exponentially many states.

SELECTED SOLUTIONS

1.1 For M1: (a) qj; (b) {q2}; (c) qi, q2, q3, qj, qj; (d) No; (e) No
For M2: (a) qj; (b) {qj, q4}; (c)ql,ql,ql,q2, q4; (d)Yes; (e)Yes

1.2 M 2 = ({qlq2,q3},{a,b}, 5i,ql,{q2}).

M 3 = ({ql,q2, q3,q4}, {a,b}, 2,ql,{qi, q4}).

The transition functions are

1 a b

q1 q2 ql
q2 q3 q3

qD q2 qj

32 a b

q1 qi q2

q2 q3 q4

q3 q2 qj

q4 q3 q4

1.4 (b) The following are DFAs for the two languages { w w has exactly three a's} and
{ w| w has at least two b's}:

b b b ab a a a,b

_ _b_ b

Combining them using the intersection construction gives the DFA:

- i a

4^ a~b

b b b

Though the problem doesn't request you to simplify the DFA, certain states can be
combined to give
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b b b

(d) These are DFAs for the two languages {wl w has an even number of a's} and
{ wj each a is followed by at least one b}:

b a b

a

b a ab

b

Combining them using the intersection construction gives the DFA:

Though the problem doesn't request you to simplify the DFA, certain states can be
combined to give

ab

94
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1.5 (a) The left-hand DFA recognizes {wl~ U contains ab}. The right-hand DFA recog-
nizes its complement, {wl w doesn't contain ab}.

b a ab b a aab

a bQ Qa _ b

(b) This DFA recognizes twl w contains baba}.

a b b ab

a

This DFA recognizes {wl w does not contain baba}.

a b b a b

a

1. 7 (a) 0,1 (i

1.11 Let N (Q, Z, 6, qo, F) be any NFA. Construct an NFA N' with a single accept
state that accepts the same language as N. Informally, N' is exactly like N except
it has E-transitions from the states corresponding to the accept states of N, to a
new accept state, qccept. State qaccepr has no emerging transitions. More formally,
N' = (Q U {qaccpt} En, 6', qo, {qamept}), where for each q e Q and a E E

'(q, a) { (q, a) if a e or q , F

Ij(q, a) U {qaccpt} if a E and q C F

and 6'(qaccept, a) = 0 for each a e El.

1.23 We prove both directions of the "iff."
(a) Assume that B = B+ and show that BB C B.
For every language BB C B' holds, so if B = B', then BB C B.
(-) Assume that BB C B and show that B = B'.
For every language B C B', so we need to show only B' C B. If w E B',
then w = X1X2 * Xk where each xri G B and k > 1. Because X1, X2 E B and
BB C B, we have X1X2 c B. Similarly, because xr12 is in B and X3 is in B, we
have X1X2X3 C B. Continuing in this way, x1 ... Xrk e B. Hence w C B, and so
we may conclude that B' C B.



96 CHAPTER 1 / REGULAR LANGUAGES

The latter argument may be written formally as the following proof by induction.
Assume that BB C B.
Claim: For each k > 1, if 1 , . k E B, then xi Xk e B.
Basis: Prove for k = 1. This statement is obviously true.
Induction step: For each k > 1, assume that the claim is true for k and prove it to be
true for k + 1.
If Xi, . . ., Xk, Xk+1 E B, then by the induction assumption, xi ... Xk E B. There-
fore XI Xkrk+1 e BB, but BB C B, so XI * *-Zk+1 G B. That proves the
induction step and the claim. The claim implies that, if BB C B, then B+ C B.

1.29 (a) Assume that Al = {O'i12' n > 0} is regular. Let p be the pumping length
given by the pumping lemma. Choose s to be the string OPiP22P. Because s is a
member of Ai and s is longer than p, the pumping lemma guarantees that s can
be split into three pieces, s = xyz, where for any i > 0 the string xy'z is in A1 .
Consider two possibilities:

1. The string y consists only of Os, only of is, or only of 2s. In these cases the
string xyyz will not have equal numbers of Os, is, and 2s. Hence xyyz is not
a member of Al, a contradiction.

2. The string y consists of more than one kind of symbol. In this case xyyz
will have the Os, is, or 2s out of order. Hence xyyz is not a member of Al,
a contradiction.

Either way we arrive at a contradiction. Therefore, A, is not regular.

(c) Assume that A3  {a2' n > 01 is regular. Let p be the pumping length given
by the pumping lemma. Choose s to be the string a2P. Because s is a member of
A1 and s is longer than p, the pumping lemma guarantees that s can be split into
three pieces, s = xyz, satisfying the three conditions of the pumping lemma.

The third condition tells us that Ixyl < p. Furthermore, p < 2P and so uyl < 2P.
Therefore IxyyzI = IxzlI + wyI < 2P + 2P = 2P+'. The second condition requires
Iy I > 1 so 2P < Ixyyz I < 2P+1. The length of xyyz cannot be a power of 2. Hence
xyyz is not a member of A3, a contradiction. Therefore, A3 is not regular.

1.40 Let M = (Q, 2, 6, qo, F) be an NFA recognizing A, where A is some regular
language. Construct M' (Q', 2, 6', go', F') recognizing NOPREFIX(A) as
follows:

. Q'= Q.
2. For r E Q' and a £E2 define 6'(r, a) = p(, ) if r F

3. go' = go.

4. F' F.
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1.44 Let MB = (QB, a ,B, qB, FB) and MC = (Qc, a Yc, qc, Fc) be DFAs recog-
nizing B and C respectively. Construct NFA M (Q, a, 6, qo, F) that recognizes
B # C as follows. To decide whether its input w is in B 2- C, the machine M
checks that w E B, and in parallel, nondeterministically guesses a string y that
contains the same number of is as contained in w and checks that y G C.

1.Q =QBXQC.

2. For (q, r) E Q and a E Z define

({(6B(q,0),r)} if a = 0
6((q,r),a) = {(6B(q,l), 

6c(r,l))} if a= 1

f{(q, 6c(r, 0))} if a = E.

3. qo = (qB, qc)-

4. F = FB X FC.

1.46 (b) Let B = {0fo l' m # n}. Observe that Bn o*1= {QklkI k > 0}. If B were
regular, then B would be regular and so would 13 n o* 1* . But we already know that
{okk1 I k > 01 isn't regular, so B cannot be regular.

Alternatively, we can prove B to be nonregular by using the pumping lemma di-
rectly, though doing so is trickier. Assume that B ={omlnI m 7# n} is regular.
Let p be the pumping length given by the pumping lemma. Observe that p! is di-
visible by all integers from 1 to p, where p! = p(p - I)(p - 2)... 1. The string
s = 0P1P+P1 E B, and IsI > p. Thus the pumping lemma implies that s can be di-
vided as xyz with x = 0A, y = 0 b, and z = 0c1P+P!, where b > 1 and a + b + c = p.
Let s' be the string xy'i+z, where i = p!/b. Then yi = OP! so Yi+1 = ob+p!, and
so Xyz = oa+bc+p 1+Pp That gives xyz = OP+P!1 p+P V B, a contradiction.

1.50 Assume to the contrary that some FST T outputs wiz on input u;. Consider the
input strings 00 and 01. On input 00, T must output 00, and on input 01, T must
output 10. In both cases the first input bit is a 0 but the first output bits differ.
Operating in this way is impossible for an FST because it produces its first output
bit before it reads its second input. Hence no such FST can exist.

1.52 (a) We prove this assertion by contradiction. Let M be a k-state DFA that recog-
nizes L. Suppose for a contradiction that L has index greater than k. That means
some set X with more than k elements is pairwise distinguishable by L. Because M
has k states, the pigeonhole principle implies that X contains two distinct strings x
and y, where 6(qo, x) = 6(qo, y). Here 6(qo, x) is the state that M is in after start-
ing in the start state qo and reading input string r. Then, for any string z C E*,
6(qo, xz) = 6(qo, yz). Therefore either both xz and yz are in L or neither are
in L. But then x and y aren't distinguishable by L, contradicting our assumption
that X is pairwise distinguishable by L.

(b) Let X = {s1, . ., Sk} be pairwise distinguishable by L. We construct DFA
M = (Q, E, 6, qo, F) with k states recognizing L. Let Q = {ql, . .. , qk and
define 6(qi, a) to be qj, where sj -L sia (the relation -L is defined in Prob-
lem 1.51). Note that sj -L sia for some sj E X; otherwise, X U sia would have
k + 1 elements and would be pairwise distinguishable by L, which would contra-
dict the assumption that L has index k. Let F = {qi Isi E L}. Let the start
state qo be the qj such that si -L S. M is constructed so that, for any state qj,
{sl 6(qo, s) = qi} = {sI S -L si}. Hence M recognizes L.
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(c) Suppose that L is regular and let k be the number of states in a DFA recognizing
L. Then from part (a) L has index at most k. Conversely, if L has index k, then
by part (b) it is recognized by a DFA with k states and thus is regular. To show that
the index of L is the size of the smallest DFA accepting it, suppose that L's index
is exactly k. Then, by part (b), there is a k-state DFA accepting L. That is the
smallest such DFA because if it were any smaller, then we could show by part (a)
that the index of L is less than k.

1.55 (a) The minimum pumping length is 4. The string 000 is in the language but
cannot be pumped, so 3 is not a pumping length for this language. If s has length
4 or more, it contains is. By dividing s onto xyz, where x is 000 and y is the first
1 and z is everything afterward, we satisfy the pumping lemma's three conditions.

(b) The minimum pumping length is 1. The pumping length cannot be 0 because
the string a is in the language and it cannot be pumped. Every nonempty string in
the language can be divided into xyz, where x = a and y is the first character and
z is the remainder. This division satisfies the three conditions.

(d) The minimum pumping length is 3. The pumping length cannot be 2 because
the string 11 is in the language and it cannot be pumped. Let s be a string in the
language of length at least 3. If s is generated by 0*1+0+1*, we can write it as ryz,
where x is the empty string, y is the first symbol of s, and z is the remainder of s.
Breaking s up in this way shows that it can be pumped. If s is generated by 10* 1,
we can write it as xyz, where 2 = 1 and y = 0 and z is the remainder of S. This
division gives a way to pump s.
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EXERCISES

2.1 Recall the CFG G 4 that we gave in Example 2.4. For convenience, let's rename its
variables with single letters as follows.

E - E+TIT
T -T x F F
F - (E) a

Give parse trees and derivations for each string.

a. a
b. a+a

c. a+a+a

d. ((a))

2.2 a. UsethelanguagesA ={am b'c" m,n>O} andB ={a'b ctm rn,n>O}

together with Example 2.36 to show that the class of context-free languages
is not closed under intersection.

b. Use part (a) and DeMorgan's law (Theorem 0.20) to show that the class of
context-free languages is not closed under complementation.

A2 .3 Answer each part for the following context-free grammar G.

R - XRX I S
S - aTb I bTa

T XTX J X e
X a aIb

What are the variables of G?

What are the terminals of G?

Which is the start variable of G?

Give three strings in L(G).

Give three strings not in L(G).

True or False: T => aba.

True or False: T => aba.

True or False: T =~. T.

1.

J.
k.

1.

m.

n.

0.

True or False: T = T.

True or False: XXX =4 aba.

True or False: X 4> aba.

True or False: T = XX.

True or False: T 4 XXX.

True or False: S => E.

Give a description in English of
L(G).

2.4 Give context-free grammars that generate the following languages. In all parts the
alphabet E is {0,1}.

Aa. {wl w contains at least three ls}

b. {w I w starts and ends with the same symbol}

c. {wI the length of w is odd}

Ad. {wI the length of w is odd and its middle symbol is a 0}

e. {w) w = w R, that is, w is a palindrome}

f. The empty set

a.
b.

C.

d.

e.

f.

g.
h.
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2.5 Give informal descriptions and state diagrams of pushdown automata for the lan-
guages in Exercise 2.4.

2.6 Give context-free grammars generating the following languages.

Aa. The set of strings over the alphabet {a,b} with more a's than b's

b. The complement of the language {anbn I n > 0}

AC. {W#.r WI is asubstringofx for w,x E {0,i}'}
d. {X1#X2# .. #XkI k > 1, each xi G {a, b}l, and for some i and j, xi = xr'}

A 2 .7 Give informal English descriptions of PDAs for the languages in Exercise 2.6.

A 2 .8 Show that the string the girl touches the boy with the flower has two
different leftmost derivations in grammar G2 on page 101. Describe in English the
two different meanings of this sentence.

2.9 Give a context-free grammar that generates the language

kA = {a'bj c Ii = j or j = k where i,j, k > 0}.

Is your grammar ambiguous? Why or why not?

2.10 Give an informal description of a pushdown automaton that recognizes the lan-
guage A in Exercise 2.9.

2.11 Convert the CFG G 4 given in Exercise 2.1 to an equivalent PDA, using the proce-
dure given in Theorem 2.20.

2.12 Convert the CFG G given in Exercise 2.3 to an equivalent PDA, using the procedure
given in Theorem 2.20.

2.13 Let G = (V, Z, R, S) be the following grammar. V = {S, T, U}; Y {0, #}; and
R is the set of rules:

S - TT U

T - OT To j
U -4 OUoO

a. Describe L(G) in English.

b. Prove that L(G) is not regular.

2.14 Convert the following CFG into an equivalent CFG in Chomsky normal form,
using the procedure given in Theorem 2.9.

A - BAB I B
B - 00

2.15 Give a counterexample to show that the following construction fails to prove that
the class of context-free languages is closed under star. Let A be a CFL that is
generated by the CFG G = (V, , R. S). Add the new rule S - SS and call the
resulting grammar G'. This grammar is supposed to generate A*.

2.16 Show that the class of context-free languages is closed under the regular operations,
union, concatenation, and star.

2.17 Use the results of Problem 2.16 to give another proof that every regular language is
context free, by showing how to convert a regular expression directly to an equiv-
alent context-free grammar.
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PROBLEMS

A2.18 a. Let C be a context-free language and R be a regular language. Prove that
the language C n R is context free.

b. Use part (a) to show that the language A = {wI w e {a, b, c}* and contains
equal numbers of a's, b's, and c's} is not a CFL.

*2.19 Let CFG G be
S aSb I bY I Ya
Y bY b aY I E

Give a simple description of L(G) in English. Use that description to give a CFG
for L(G), the complement of L(G).

2.20 Let A/B = {wI wx E A for some x e B}. Show that, if A is context free and B is
regular, then A/B is context free.

*2.21 Let E = {a,b}. Give a CFG generating the language of strings with twice as many
a's as b's. Prove that your grammar is correct.

*2.22 Let C = {zx#y x, y G {0,l}* and x 4 y}. Show that C is a context-free language.

*2.23 Let D = {xylx, y G {0,1}* and xj = Myj butx 7# y}. Show that D is a context-free
language.

*2.24 Let E = {aib I i 0 j and 2i 54 j}. Show that E is a context-free language.

2.25 For any language A, let SUFFIX(A) = {vI uV E A for some string u}. Show that
the class of context-free languages is closed under the SUFFIX operation.

2.26 Show that, if G is a CFG in Chomsky normal form, then for any string w e L(G)
of length n > 1, exactly 2n - 1 steps are required for any derivation of w.

*2.27 Let G = (V, A, R, (STMT)) be the following grammar.

(STMT) (ASSIGN) I (IF-THEN) I (IF-THEN-ELSE)

(IF-THEN) -a if condition then (STMT)

(IF-THEN-ELSE) -* if condition then (STMT) else (STMT)
(ASSIGN) a:=1

= {if, condition, then, else, a: =1}.

V {(STMT), (IF-THEN), KIF-THEN-ELSE), (ASSIGN)}

G is a natural-looking grammar for a fragment of a programming language, but G
is ambiguous.

a. Show that G is ambiguous.

b. Give a new unambiguous grammar for the same language.

*2.28 Give unambiguous CFGs for the following languages.

a. {wl in every prefix of w the number of a's is at least the number of b's}

b. {wl the number of a's and b's in w are equal}

c. {wl the number of a's is at least the number of b's}

*2.29 Show that the language A in Exercise 2.9 is inherently ambiguous.
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2.30 Use the pumping lemma to show that the following languages are not context free.

a. {Ott0"V I n n tl| > 0}
Ab {fo#0 2

,?# I l n > 0}

Ac. {w#tj w is a substring oft, where w,t e {a,b}*}

d. {t7 #t2# #tkJ k > 2, each t, E {a,b}*, and t, = tj for some i : j}

2.31 Let B be the language of all palindromes over {0,1} containing an equal number
of Os and is. Show that B is not context free.

*2.32 Let E = {1, 2, 3, 4} and C = {v c E* I in vw, the number of is equals the number
of 2s, and the number of 3s equals the number of 4s}. Show that C is not context
free.

2.33 Show that F {ab2 I i 7 kj for every positive integer k} is not context free.

2.34 Consider the language B = L(G), where G is the grammar given in Exercise 2.13.
The pumping lemma for context-free languages, Theorem 2.34, states the exis-
tence of a pumping length p for B. What is the minimum value of p that works in
the pumping lemma? Justify your answer.

2.35 Let G be a CFG in Chomsky normal form that contains b variables. Show that, if
G generates some string with a derivation having at least 2h steps, L(G) is infinite.

2.36 Give an example of a language that is not context free but that acts like a CFL in the
pumping lemma. Prove that your example works. (See the analogous example for
regular languages in Problem 1.54.)

'2.37 Prove the following stronger form of the pumping lemma, wherein both pieces v
and y must be nonempty when the string s is broken up.

If A is a context-free language, then there is a number k where, if s is any string in
A of length at least k, then s may be divided into five pieces, s - uvxyz, satisfying
the conditions:

a. for each i > 0, uvixyiz C A,

b. v e and yp7 E, and

c. |vxyl < k.

A2*38 Refer to Problem 1.41 for the definition of the perfect shuffle operation. Show that
the class of context-free languages is not closed under perfect shuffle.

2.39 Refer to Problem 1.42 for the definition of the shuffle operation. Show that the
class of context-free languages is not closed under shuffle.

*2.40 Say that a language is prefix-closed if the prefix of any string in the language is also
in the language. Let C be an infinite, prefix-closed, context-free language. Show
that C contains an infinite regular subset.

*2.41 Read the definitions of NOPREFIX(A) and NOEXTEND(A) in Problem 1.40.

a. Show that the class of CFLs is not closed under NOPREFIX operation.

b. Show that the class of CFLs is not closed under NOEXTEND operation.

2.42 Let E = {i.#} and Y = {W| v = t1 #t2# #tk for k > 0, each ti E 1*, and
ti $ tj whenever i - j}. Prove that Y is not context free.
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2.43 For strings w and t, write w t if the symbols of w are a permutation of the
symbols of t. In other words, wt if t and w have the same symbols in the same
quantities, but possibly in a different order.

For any string w, define SCRAMBLE(w) {tI t w}. For any language A, let
SCRAMBLE(A) = {tI t E SCRAMBLE(w) for some w G A}.

a. Show that, if E= {0, 1}, then the SCRAMBLE of a regular language is
context free.

b. What happens in part (a) if E contains 3 or more symbols? Prove your
answer.

2.44 If A and B are languages, define A o B = {xyl x E A and y E B and IJ = IyI}.
Show that if A and B are regular languages, then A o B is a CFL.

*2.45 Let A = w wtw ,l W. t E {0, 1}* and JwI t }. Prove that A is not a context-free
language.

SELECTED SOLUTIONS

2.3 (a) R, X, S, T; (b) a, b; (c) R; (d) Three strings in G are ab, ba, and aab;
(e) Three strings not in G are a, b, and e; (f) False; (g) True; (h) False;
(i) True; (j) True; (k) False; (I) True; (m) True; (n) False; (o) L(G) consists
of all strings over a and b that are not palindromes.

2.4 (a) S R1R1RR (d) S - l S0 1 OS S I S O 1 I1Sl
R OR I 1RIe

2.6 (a) S TaT (c) S -TX
T TT|aTb{bTa|a| T -OTO|1T1I#X

T generates all strings with at least as X - OX I ix I s
many a's as b's, and S forces an extra a.

2.7 (a) The PDA uses its stack to count the number of a's minus the number of b's. It
enters an accepting state whenever this count is 0. In more detail, it operates as
follows. The PDA scans across the input. If it sees a b and its top stack symbol is a
a, it pops the stack. Similarly, if it scans a a and its top stack symbol is a b, it pops
the stack. In all other cases, it pushes the input symbol onto the stack. After the
PDA scans the input, if b is on top of the stack, it accepts. Otherwise it rejects.

(c) The PDA scans across the input string and pushes every symbol it reads until
it reads a #. If # is never encountered, it rejects. Then, the PDA skips over part
of the input, nondeterministically deciding when to stop skipping. At that point,
it compares the next input symbols with the symbols it pops off the stack. At any
disagreement, or if the input finishes while the stack is nonempty, this branch of
the computation rejects. If the stack becomes empty, the machine reads the rest of
the input and accepts.
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2.8 Here is one derivation:
(SENTENCE) => (NOUN-PHRASE)(VERB-PHRASE) =

(CMPLX-NOUN)(VERB-PHRASE) =>

(CMPLX-NOUN)(CMPLX-VERB)(PREP-PHRASE) >

(ARTICLE) (NOUN) (CMPLX-VERB)(PREP-PHRASE) =>

The boy (VERB) (NOUN-PHRASE)(PREP-PHRASE) =>

The boy (VERB)(NOUN-PHRASE)(PREP)(CMPLX-NOUN)=z

The boy touches (NOUN-PHRASE) (PREP)(CMPLX-NOUN) =

The boy touches (CMPLX-NOUN)(PREP)(CMPLX-NOUN)=n
The boy touches (ARTICLE)(NOUN)(PREP)(CMPLX-NOUN)='
The boy touches the girl with (CMPLX-NOUN) =*

The boy touches the girl with (ARTICLE)(NOUN)=s
The boy touches the girl with the flower

Here is another derivation:

(SENTENCE) X (NOUN-PHRASE)(VERB-PHRASE) X

(CMPLX-NOUN)(VERB-PHRASE) =t (ARTICLE)(NOUN)(VERB-PHRASE) X

The boy (VERB-PHRASE) => The boy (CMPLX-VERB)=>
The boy (VERB)(NOUN-PHRASE) =:.

The boy touches (NOUN-PHRASE) =>

The boy touches (CMPLX-NOUN)(PREP-PHRASE)=.
The boy touches (ARTICLE)(NOUN)(PREP-PHRASE)=1
The boy touches the girl (PREP-PHRASE) =:i

The boy touches the girl (PREP)(CMPLX-NOUN)=>
The boy touches the girl with (CMPLX-NOUN) =#

The boy touches the girl with (ARTICLE) (NOUN) =z

The boy touches the girl with the flower

Each of these derivations corresponds to a different English meaning. In the first

derivation, the sentence means that the boy used the flower to touch the girl. In

the second derivation, the girl is holding the flower when the boy touches her.

2.18 (a) Let C be a context-free language and R be a regular language. Let P be the

PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of

states of P and Q' is the set of states of D, we construct a PDA P' that recognizes

C n R with the set of states Q x Q'. P' will do what P does and also keep track of

the states of D. It accepts a string w if and only if it stops at a state q E Fp x FD,
where FP is the set of accept states of P and FD is the set of accept states of D.
Since C n R is recognized by P', it is context free.

(b) Let R be the regular language a*b'c*. If A were a CFL then A n R would be

a CFL by part (a). However, A n R = {arb'c' | n > 0}, and Example 2.36 proves

that A n R is not context free. Thus A is not a CFL.

2.30 (b) Let B = {On#02n#03, n > 0J. Let p be the pumping length given by the

pumping lemma. Let s = op#o
2p

#o3p. We show that s = uvxyz cannot be

pumped.

Neither v nor y can contain #, otherwise rv
2

wy
2 

z contains more than two #s.

Therefore, if we divide s into three segments by #'s: o0, 2p and 0 3p, at least one

of the segments is not contained within either v or Y. Hence xv
2 

Wy
2

z is not in B

because the 1 : 2 : 3 length ratio of the segments is not maintained.
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(c) Let C = {w#tI w is a substring of t, where w, t C {a, b}* }. Let p be the
pumping length given by the pumping lemma. Let s = aPbP#aPbl. We show that
the string s = uvxyz cannot be pumped.

Neither v nor y can contain #, otherwise uvozyoz does not contain # and therefore
is not in C. If both v and y are nonempty and occur on the left-hand side of the
#, the string UV

2 Xy 2 z cannot be in C because it is longer on the left-hand side of
the #. Similarly, if both strings occur on the right-hand side of the #, the string
uvOxy 0z cannot be in C because it is again longer on the left-hand side of the #. If
only one of v and y is nonempty (both cannot be nonempty), treat them as if both
occurred on the same side of the # as above.

The only remaining case is where both v and y are nonempty and straddle the #.
But then v consists of b's and y consists of a's because of the third pumping lemma
condition lvxyl < p. Hence, uv2

xy
2 z contains more b's on the left-hand side of

the #, so it cannot be a member of C.

2.38 Let A be the language {Okik I k > 0} and let B be the language {akb3
k Ik > 01.

The perfect shuffle of A and B is the language C = {(Oa)k(Ob)k(1b)2 kI k > 0}.
Languages A and B are easily seen to be CFLs, but C is not a CFL, as follows. If C
were a CFL, let p be the pumping length given by the pumping lemma, and let s be
the string (0a)P(Ob)P(1b) 2 P. Because s is longer than p and s C C, we can divide
a = uvxyz satisfying the pumping lemma's three conditions. Strings in C contain
twice as many is as a's. In order for uv2

Xy
2z to have that property, the string vry

must contain both is and a's. But that is impossible, because they are separated by
2p symbols yet the third condition says that cVZyI < p. Hence C is not context
free.
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Now M scans the list of edges. For each edge, M tests whether the two
underlined nodes n1 and n2 are the ones appearing in that edge. If they are,
.A dots n1, removes the underlines, and goes on from the beginning of stage 2.
If they aren't, M checks the next edge on the list. If there are no more edges,
{n,, n2} is not an edge of G. Then M moves the underline on n2 to the next
dotted node and now calls this node n2. It repeats the steps in this paragraph
to check, as before, whether the new pair {n,, n2} is an edge. If there are no
more dotted nodes, n1 is not attached to any dotted nodes. Then M sets the
underlines so that n1 is the next undotted node and n2 is the first dotted node
and repeats the steps in this paragraph. If there are no more undotted nodes, Al
has not been able to find any new nodes to dot, so it moves on to stage 4.

For stage 4, Al scans the list of nodes to determine whether all are dotted.
If they are, it enters the accept state; otherwise it enters the reject state. This
completes the description of TM M.

EXERCISES

3.1 This exercise concerns TM M2 whose description and state diagram appear in Ex-
ample 3.7. In each of the parts, give the sequence of configurations that M2 enters
when started on the indicated input string.

a. 0.
Ab. 00.

C. 000.

d. oooooo.

3.2 This exercise concerns TM M1 whose description and state diagram appear in Ex-
ample 3.9. In each of the parts, give the sequence of configurations that Al1 enters
when started on the indicated input string.

Aa. 1.

b. 1#1.
C. 1##1.
d. 10#11.
e. 10#10.

A 3 .3 Modify the proof of Theorem 3.16 to obtain Corollary 3.19, showing that a lan-
guage is decidable iff some nondeterministic Turing machine decides it. (You may
assume the following theorem about trees. If every node in a tree has finitely many
children and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

3.4 Give a formal definition of an enumerator. Consider it to be a type of two-tape
Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.
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A 3.5 Examine the formal definition of a Turing machine to answer the following ques-
tions, and explain your reasoning.

a. Can a Turing machine ever write the blank symbol L on its tape?

b. Can the tape alphabet F be the same as the input alphabet E?

c. Can a Turing machine's head ever be in the same location in two successive
steps?

d. Can a Turing machine contain just a single state?

3.6 In Theorem 3.21 we showed that a language is Turing-recognizable iff some enu-
merator enumerates it. Why didn't we use the following simpler algorithm for the
forward direction of the proof? As before, s1, S2, . . . is a list of all strings in E*.

E = "Ignore the input.
1. Repeat the following for i = 1, 2, 3, ....
2. RunMonsi.
3. If it accepts, print out si,."

3.7 Explain why the following is not a description of a legitimate Turing machine.

MSad = "The input is a polynomial p over variables xi, . . ., Xk.

1. Try all possible settings of x1 , ... , Xk to integer values.
2. Evaluate p on all of these settings.
3. If any of these settings evaluates to 0, accept; otherwise, reject."

3.8 Give implementation-level descriptions of Turing machines that decide the follow-
ing languages over the alphabet {0,1}.

Aa. {fl w contains an equal number of Os and is}
b. {wf w contains twice as many Os as ls}

c. {wJ w does not contain twice as many Os as is}

PROBLEMS

3.9 Let a k-PDA be a pushdown automaton that has k stacks. Thus a O-PDA is an
NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more
powerful (recognize a larger class of languages) than O-PDAs.

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

A 3 .10 Say that a write-once Turing machine is a single-tape TM that can alter each tape
square at most once (including the input portion of the tape). Show that this variant
Turing machine model is equivalent to the ordinary Turing machine model. (Hint:
As a first step consider the case whereby the Turing machine may alter each tape
square at most twice. Use lots of tape.)
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3.11 A Turing machine with doubly infinite tape is similar to an ordinary Turing ma-
chine, but its tape is infinite to the left as well as to the right. The tape is initially
filled with blanks except for the portion that contains the input. Computation is
defined as usual except that the head never encounters an end to the tape as it
moves leftward. Show that this type of Turing machine recognizes the class of
Turing-recognizable languages.

3.12 A Turing machine with left reset is similar to an ordinary Turing machine, but the
transition function has the form

6: Q x row x F x {RRESET}.

If 6(q, a) = (r, b, RESET), when the machine is in state q reading an a, the ma-
chine's head jumps to the left-hand end of the tape after it writes b on the tape and
enters state r. Note that these machines do not have the usual ability to move the
head one symbol left. Show that Turing machines with left reset recognize the class
of Turing-recognizable languages.

3.13 A Turing machine with stay put instead of left is similar to an ordinary Turing
machine, but the transition function has the form

6: Q x F- Q x rF x {R,S}.

At each point the machine can move its head right or let it stay in the same position.
Show that this Turing machine variant is not equivalent to the usual version. What
class of languages do these machines recognize?

3.14 A queue automaton is like a push-down automaton except that the stack is replaced
by a queue. A queue is a tape allowing symbols to be written only on the left-hand
end and read only at the right-hand end. Each write operation (we'll call it a push)
adds a symbol to the left-hand end of the queue and each read operation (we'll
call it a pull) reads and removes a symbol at the right-hand end. As with a PDA,
the input is placed on a separate read-only input tape, and the head on the input
tape can move only from left to right. The input tape contains a cell with a blank
symbol following the input, so that the end of the input can be detected. A queue
automaton accepts its input by entering a special accept state at any time. Show that
a language can be recognized by a deterministic queue automaton iff the language
is Turing-recognizable.

3.15 Show that the collection of decidable languages is closed under the operation of

Aa. union. d. complementation.

b. concatenation. e. intersection.

c. star.

3.16 Show that the collection of Turing-recognizable languages is closed under the op-
eration of

Aa. union. c. star.

b. concatenation. d. intersection.

*3.17 Let B = {(Mi), (M 2), . } be a Turing-recognizable language consisting of TM
descriptions. Show that there is a decidable language C consisting of TM descrip-
tions such that every machine described in B has an equivalent machine in C and
vice versa.
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*3.18 Show that a language is decidable iff some enumerator enumerates the language in
lexicographic order.

*3.19 Show that every infinite Turing-recognizable language has an infinite decidable
subset.

*3.20 Show that single-tape TMs that cannot write on the portion of the tape containing
the input string recognize only regular languages.

3.21 Let cix9 + C2X-I + --+ cnx + cn±1 be a polynomial with a root at x = x0. Let
cmax be the largest absolute value of a ci. Show that

xooI < (n+1) ecn

A3 .2 2 Let A be the language containing only the single string s, where

0 if life never will be found on Mars.

1 if life will be found on Mars someday.

Is A decidable? Why or why not? For the purposes of this problem, assume that
the question of whether life will be found on Mars has an unambiguous YES or No
answer.

SELECTED SOLUTIONS

3.1 (b) q100, uq2O, uxq3u, uq 5 xu, qiuxu, uq 2 xu, uxq2u, uxuqaccept

3.2 (a) qi 11, xq31, xlq3u, xluqrejct.

3.3 We prove both directions of the "iff." First, if a language L is decidable, it can be
decided by a deterministic Turing machine, and that is automatically a nondeter-
ministic Turing machine.
Second, if a language L is decided by a nondeterministic TM N, we construct a
deterministic TM D2 that decides L. Machine D2 runs the same algorithm that
appears in the TM D described in the proof of Theorem 3.16, with an additional
Stage 5: Reject if all branches of the nondeterminism of N are exhausted.
We argue that D2 is a decider for L. If N accepts its input, D2 will eventually
find an accepting branch and accept, too. If N rejects its input, all of its branches
halt and reject because it is a decider. Hence each of the branches has finitely
many nodes, where each node represents one step of N's computation along that
branch. Therefore N's entire computation tree on this input is finite, by virtue of
the theorem about trees given in the statement of the exercise. Consequently D
will halt and reject when this entire tree has been explored.

3.5 (a) Yes. The tape alphabet F contains u. A Turing machine can write any characters
in F on its tape.

(b) No. E never contains u, but r always contains u. So they cannot be equal.

(c) Yes. If the Turing machine attempts to move its head off the left-hand end of
the tape, it remains on the same tape cell.

(d) No. Any Turing machine must contain two distinct states qaccept and qrejmct. So,
a Turing machine contains at least two states.
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3.8 (a) "On input string Iv:

1. Scan the tape and mark the first 0 which has not been marked.
If no unmarked 0 is found, go to stage 4. Otherwise, move the
head back to the front of the tape.

2. Scan the tape and mark the first 1 which has not been marked.
If no unmarked 1 is found, reject.

3. Move the head back to the front of the tape and go to stage 1.
4. Move the head back to the front of the tape. Scan the tape to see

if any unmarked is remain. If none are found, accept; otherwise,
reject."

3.10 We first simulate an ordinary Turing machine by a write-twice Turing machine.
The write-twice machine simulates a single step of the original machine by copying
the entire tape over to a fresh portion of the tape to the right-hand side of the
currently used portion. The copying procedure operates character by character,
marking a character as it is copied. This procedure alters each tape square twice,
once to write the character for the first time and again to mark that it has been
copied. The position of the original Turing machine's tape head is marked on the
tape. When copying the cells at, or adjacent to, the marked position, the tape
contents is updated according to the rules of the original Turing machine.

To carry out the simulation with a write-once machine, operate as before, except
that each cell of the previous tape is now represented by two cells. The first of these
contains the original machine's tape symbol and the second is for the mark used in
the copying procedure. The input is not presented to the machine in the format
with two cells per symbol, so the very first time the tape is copied, the copying
marks are put directly over the input symbols.

3.15 (a) For any two decidable languages LI and L2, let M1 and Al 2 be the TMs that
decide them. We construct a TM M' that decides the union of L1 and L 2:

"On input w:
1. Run M1 on w. If it accepts, accept.
2. Run M2 on w. If it accepts, accept. Otherwise, reject."

M' accepts w if either Ml or M2 accepts it. If both reject, M' rejects.

3.16 (a) For any two Turing-recognizable languages L1 and L2 , let M1 and M2 be the
TMs that recognize them. We construct a TM M' that recognizes the union of Li
and L2:

"On input w:
1. Run M1 and M2 alternatively on w step by step. If either accept,

accept. If both halt and reject, reject."

If either Ml and Al2 accept w, M' accepts te because the accepting TM arrives to its
accepting state after a finite number of steps. Note that if both Al' and M2 reject
and either of them does so by looping, then M' will loop.

3.22 The language A is one of the two languages, {0} or { 1 }. In either case the language
is finite, and hence decidable. If you aren't able to determine which of these two
languages is A, you won't be able to describe the decider for A, but you can give
two Turing machines, one of which is A's decider.
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machine M is a decider for A.

M = "On input W:
1. Run both M1 and M 2 on input w in parallel.
2. If M1 accepts, accept; if M 2 accepts, reject."

Running the two machines in parallel means that M has two tapes, one for simu-
lating M1 and the other for simulating M2 . In this case M takes turns simulating
one step of each machine, which continues until one of them accepts.

Now we show that M decides A. Every string w is either in A or A. Therefore
either M1 or M2 must accept w. Because M halts whenever M1 or M 2 accepts,
M always halts and so it is a decider. Furthermore, it accepts all strings in A and
rejects all strings not in A. So M is a decider for A, and thus A is decidable.

COROLLARY 4.23 ................................................

ATM is not Turing-recognizable.

PROOF We know that ATM is Turing-recognizable. If ATM also were Turing-
recognizable, ATM would be decidable. Theorem 4.11 tells us that ATM is not
decidable, so ATM must not be Turing-recognizable.

EXERCISES

A4 .1 Answer all parts for the following DFA M and give reasons for your answers.

I

a. Is (M, 0100) e ADFA?

b. Is (M, 011) e ADFA?

c. Is (M) e ADFA?

d. Is (M, 0100) E AREX?

e. Is (M) £ EDFA?

f. Is (M, M) E EQDFA?
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4.2 Consider the problem of determining whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

4.3 Let ALLDFA ={ (A)I A is a DFA and L(A) = } . Show that ALLDFA is decidable.

4.4 Let AECFG = {(G) I G is a CFG that generates E}. Show that AECFG is decidable.

4.5 Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10}. We describe the
functions f: X - Y and g: X Y in the following tables. Answer each part
and give a reason for each negative answer.

n f (n) n g(n)
1 6 1 10
2 7 2 9
3 6 3 8
4 7 4 7
5 6 5 6

Aa. Is f one-to-one? Ad. Is g one-to-one?
b. Is f onto? e. Is g onto?
c. Is f a correspondence? f. Is g a correspondence?

4.6 Let B be the set of all infinite sequences over {0,1}. Show that 13 is uncountable,
using a proof by diagonalization.

4.7 Let T = { (i, j, k) I i, j, k E A}. Show that T is countable.
4.8 Review the way that we define sets to be the same size in Definition 4.12 (page 175).

Show that "is the same size" is an equivalence relation.

PROBLEMS

A4 .9 Let INFINITEDFA ={(A)l A is a DFA and L(A) is an infinite language}. Show
that INFINITEDFA is decidable.

4.10 Let INFINITEPDA = { (M) I M is a PDA and L(M) is an infinite language}. Show
that INFINITEPDA is decidable.

A4 .11 Let A = {(M)J M is a DFA which doesn't accept any string containing an odd
number of Is}. Show that A is decidable.

4.12 Let A = {(R, S) I R and S are regular expressions and L(R) C L(S)}. Show that
A is decidable.

A4 .13 Let Z = {0,1}. Show that the problem of determining whether a CFG generates
some string in 1* is decidable. In other words, show that

{(G)I G is a CFG over {0,I} and l * n L(G) - O}

is a decidable language.

'4.14 Show that the problem of determining whether a CFG generates all strings in l* is
decidable. Inotherwords,showthat{(G)l GisaCFGover{0,} and l* C L(G)}
is a decidable language.
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4.15 Let A = {(R)I R is a regular expression describing a language containing at least
one string w that has 111 as a substring (i.e., w = x 1 ly for some x and y)}. Show
that A is decidable.

4.16 Prove that EQDFA is decidable by testing the two DFAs on all strings up to a certain
size. Calculate a size that works.

*4.17 Let C be a language. Prove that C is Turing-recognizable iff a decidable language
D exists such that C = xIl y (Kx, y) G D)}.

4.18 Let A and B be two disjoint languages. Say that language C separates A and B if
A C C and B C C7. Show that any two disjoint co-Turing-recognizable languages
are separable by some decidable language.

4.19 Let S = {(M) I M is a DFA that accepts w R whenever it accepts w}. Show that S
is decidable.

4.20 A language is prefix-free if no member is a proper prefix of another member. Let
PREFIX-FREEREx = {RI R is a regular expression where L(R) is prefix-free}.
Show that PREFIX-FREEREX is decidable. Why does a similar approach fail to
show that PREFIX-FREEcFG is decidable?

A*4. 2 1 Say that an NFA is ambiguous if it accepts some string along two different com-
putation branches. Let AMBIGNFA = {KN)I N is an ambiguous NFA}. Show that
AMBIGNFA is decidable. (Suggestion: One elegant way to solve this problem is to
construct a suitable DFA and then run EDFA on it.)

4.22 A useless state in a pushdown automaton is never entered on any input string. Con-
sider the problem of determining whether a pushdown automaton has any useless
states. Formulate this problem as a language and show that it is decidable.

A*4.2 3 Let BALDFA = {(M)I M is a DFA that accepts some string containing an equal
number of Os and 1s4. Show that BALDFA is decidable. (Hint: Theorems about
CFLs are helpful here.)

*4.24 Let PALDFA = {(M)I M is a DFA that accepts some palindrome}. Show that
PALDFA is decidable. (Hint: Theorems about CFLs are helpful here.)

*4.25 Let E = {(M) I M is a DFA that accepts some string with more Is than 0s}. Show
that E is decidable. (Hint: Theorems about CFLs are helpful here.)

4.26 Let C = { (G, x) J G is a CFG that generates some string w, where x is a substring
of w }. Show that C is decidable. (Suggestion: An elegant solution to this problem
uses the decider for ECFG.)

4.27 Let CCFG = {I G, k)I L(G) contains exactly k strings where k > 0 or k = o}.
Show that CCFG is decidable.

4.28 Let A be a Turing-recognizable language consisting of descriptions of Turing ma-
chines, {(Mi), KM2), . .}. , where everyMi is a decider. Prove that some decidable
language D is not decided by any decider Mi whose description appears in A.
(Hint: You may find it helpful to consider an enumerator for A.)
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SELECTED SOLUTIONS

4.1 (a) Yes. The DFA M accepts 0100.
(b) No. M doesn't accept 011.
(c) No. This input has only a single component and thus is not of the correct form.

(d) No. The first component is not a regular expression and so the input is not of
the correct form.
(e) No. M's language isn't empty.
(0 Yes. M accepts the same language as itself.

4.5 (a) No, f is not one-to-one because f (1) = f (3).

(d) Yes, g is one-to-one.

4.9 The following TM I decides INFINITEDFA.

I = "On input (A) where A is a DFA:
1. Let k be the number of states of A.
2. Construct a DFA D that accepts all strings of length k or more.
3. Construct a DFA M such that L(M) = L(A) n L(D).
4. Test L(M) = 0, using the EDFA decider T from Theorem 4.4.
5. If T accepts, reject; if T rejects, accept."

This algorithm works because a DFA which accepts infinitely many strings must
accept arbitrarily long strings. Therefore this algorithm accepts such DFAs. Con-
versely, if the algorithm accepts a DFA, the DFA accepts some string of length k or
more, where k is the number of states of the DFA. This string may be pumped in
the manner of the pumping lemma for regular languages to obtain infinitely many
accepted strings.

4.11 The following TM decides A.

"On input (M):
1. Construct a DFA 0 that accepts every string containing an odd

number of is.
2. Construct DFA B such that L(B) = L(M) n L(O).
3. Test whether L(B) = 0, using the EDFA decider T from Theo-

rem 4.4.
4. If T accepts, accept; if T rejects, reject."

4.13 You showed in Problem 2.18 that, if C is a context-free language and R is a regular
language, then C n R is context free. Therefore 1* n L(G) is context free. The
following TM decides A.

"On input (G):
1. Construct CFG H such that L(H) = 1* n L(G).
2. Test whether L(H) = 0, using the ECFG decider R from Theo-

rem 4.8.
3. If R accepts, reject; if R rejects, accept."
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4.21 The following procedure decides AMBIGNFA. Given an NFA N, we design a DFA
D that simulates N and accepts a string iff it is accepted by N along two different
computational branches. Then we use a decider for EDFA to determine whether D
accepts any strings.

Our strategy for constructing D is similar to the NFA to DFA conversion in the
proof of Theorem 1.39. We simulate N by keeping a pebble on each active state.
We begin by putting a red pebble on the start state and on each state reachable from
the start along E transitions. We move, add, and remove pebbles in accordance
with N's transitions, preserving the color of the pebbles. Whenever two or more
pebbles are moved to the same state, we replace its pebbles with a blue pebble.
After reading the input, we accept if a blue pebble is on an accept states of N.

The DFA D has a state corresponding to each possible position of pebbles. For
each state of N, three possibilities occur: it can contain a red pebble, a blue pebble,
or no pebble. Thus, if N has n states, D will have 3' states. Its start state, accept
states, and transition function are defined to carry out the simulation.

4.23 The language of all strings with an equal number of Os and is is a context-free
language, generated by the grammar S - iSOS I oSiS I E. Let P be the PDA that
recognizes this language. Build a TM M for BALDFA, which operates as follows.
On input KB), where B is a DFA, use B and P to construct a new PDA R that
recognizes the intersection of the languages of B and P. Then test whether R's
language is empty. If its language is empty, reject; otherwise, accept.
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EXERCISES

5.1 Show that EQCFG is undecidable.

5.2 Show that EQCFG is co-Turing-recognizable.

5.3 Find a match in the following instance of the Post Correspondence Problem.

ab ] [b] [aba] [aal}
l abab | a] b La I

5.4 If A <m B and B is a regular language, does that imply that A is a regular lan-
guage? Why or why not?

A 5 .5 Show that ATM is not mapping reducible to ETM. In other words, show that no
computable function reduces ATM to ETM. (Hint: Use a proof by contradiction,
and facts you already know about ATM and ETM.)

A 5.6 Show that <,11 is a transitive relation.

A 5 .7 Show that if A is Turing-recognizable and A <rn A, then A is decidable.

A 5 .8 In the proof of Theorem 5.15 we modified the Turing machine M so that it never
tries to move its head off the left-hand end of the tape. Suppose that we did not
make this modification to M. Modify the PCP construction to handle this case.

PROBLEMS

5.9 Let T = { (M) I A/l is a TM that accepts w R whenever it accepts wu}. Show that T
is undecidable.

A 5 .10 Consider the problem of determining whether a two-tape Turing machine ever
writes a nonblank symbol on its second tape when it is run on input w. Formulate
this problem as a language, and show that it is undecidable.

A 5 .11 Consider the problem of determining whether a two-tape Turing machine ever
writes a nonblank symbol on its second tape during the course of its computation
on any input string. Formulate this problem as a language, and show that it is
undecidable.

5.12 Consider the problem of determining whether a single-tape Turing machine ever
writes a blank symbol over a nonblank symbol during the course of its computation
on any input string. Formulate this problem as a language, and show that it is
undecidable.

5.13 A useless state in a Turing machine is one that is never entered on any input string.
Consider the problem of determining whether a Turing machine has any useless
states. Formulate this problem as a language and show that it is undecidable.
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5.14 Consider the problem of determining whether a Turing machine M on an input
w ever attempts to move its head left when its head is on the left-most tape cell.
Formulate this problem as a language and show that it is undecidable.

5.15 Consider the problem of determining whether a Turing machine M on an input
w ever attempts to move its head left at any point during its computation on w.
Formulate this problem as a language and show that it is decidable.

5.16 Let r = {o, 1, u4 be the tape alphabet for all TMs in this problem. Define the busy
beaverfunction BB: A(-M[ as follows. For each value of k, consider all k-state
TMs that halt when started with a blank tape. Let BB(k) be the maximum number
of is that remain on the tape among all of these machines. Show that BB is not a
computable function.

5.17 Show that the Post Correspondence Problem is decidable over the unary alphabet
E = {}.

5.18 Show that the Post Correspondence Problem is undecidable over the binary alpha-
bet Z = {o,1}.

5.19 In the silly Post Correspondence Problem, SPCP, in each pair the top string has the
same length as the bottom string. Show that the SPCP is decidable.

5.20 Prove that there exists an undecidable subset of {I}*.

5.21 LetAMBIGCFG = {(G)I G is an ambiguous CFG}. Show thatAMBIGcFG is unde-
cidable. (Hint: Use a reduction from PCP. Given an instance

P [ ] 2 [k].

of the Post Correspondence Problem, construct a CFG G with the rules

S T I B
T tiTa, -tkTak |tial ,- tkak
B biBai bkBak |biaas| bk ak,

where al, ... , ak are new terminal symbols. Prove that this reduction works.)

5.22 Show that A is Turing-recognizable iff A <mr ATM.

5.23 Show that A is decidable iff A <m O* 1'.

5.24 Let J = {wl either w = ox for some x i ATM, or w = ly for some y E ATM }.
Show that neither J nor J is Turing-recognizable.

5.25 Give an example of an undecidable language B, where B <.., B.

5.26 Define a two-headedfinite automaton (2DFA) to be a deterministic finite automa-
ton that has two read-only, bidirectional heads that start at the left-hand end of the
input tape and can be independently controlled to move in either direction. The
tape of a 2DFA is finite and is just large enough to contain the input plus two ad-
ditional blank tape cells, one on the left-hand end and one on the right-hand end,
that serve as delimiters. A 2DFA accepts its input by entering a special accept state.
For example, a 2DFA can recognize the language {aflbncrl n > 0}.

a. Let A2DFA = {M, x) I M is a 2DFA and M accepts x4. Show that A2DFA is

decidable.

b. Let E2DFA = {M)I M is a 2DFA and L(M) = 0}. Show that E2DFA is not
decidable.
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5.27 A two-dimensionalfinite automaton (2DIM-DFA) is defined as follows. The input
is an m x n rectangle, for any m, n > 2. The squares along the boundary of the
rectangle contain the symbol # and the internal squares contain symbols over the
input alphabet E. The transition function is a mapping Q x E - Q x {L, R, U, D}
to indicate the next state and the new head position (Left, Right, Up, Down). The
machine accepts when it enters one of the designated accept states. It rejects if it
tries to move off the input rectangle or if it never halts. Two such machines are
equivalent if they accept the same rectangles. Consider the problem of determin-
ing whether two of these machines are equivalent. Formulate this problem as a
language, and show that it is undecidable.

A '5.28 Rice's theorem. Let P be any nontrivial property of the language of a Turing
machine. Prove that the problem of determining whether a given Turing machine's
language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descrip-
tions where P fulfills two conditions. First, P is nontrivial-it contains some, but
not all, TM descriptions. Second, P is a property of the TM's language-whenever
L(M1 ) = L(M2 ), we have (M1) E P iff (M2) E P. Here, M1 and M2 are any
TMs. Prove that P is an undecidable language.

5.29 Show that both conditions in Problem 5.28 are necessary for proving that P is
undecidable.

5.30 Use Rice's theorem, which appears in Problem 5.28, to prove the undecidability of
each of the following languages.

Aa. INFINITETM= {(M)I M is a TM and L(M) is an infinite language}.
b. {(M)I MisaTM and 1011 EL(M)}.

c. ALLTM= {(M)J MisaTMandL(M) =E*.

5.31 Let
E J 3x + t for odd x

f x/2 for even x

for any natural number x. If you start with an integer x and iterate f, you obtain a
sequence, x, f(x), f(f(x)),)... Stop if you ever hit 1. For example, if x = 17, you
get the sequence 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive computer
tests have shown that every starting point between 1 and a large positive integer
gives a sequence that ends in 1. But, the question of whether all positive starting
points end up at 1 is unsolved; it is called the 3x + 1 problem.

Suppose that ATM were decidable by a TM H. Use H to describe a TM that is
guaranteed to state the answer to the 3x + 1 problem.

5.32 Prove that the following two languages are undecidable.

a. OVERLAPcFrc {(G, H)I G and H are CFGs where L(G) n L(H) 0}.
(Hint: Adapt the hint in Problem 5.21.)

b. PREFLV-FkEECF= {GI G is a CFG where L(G) is prefix-free}.

5.33 Let S ={(M) M is a TM and L(M)= {(M)} }. Show that neither S nor S is
Turing-recognizable.

5.34 Consider the problem of determining whether a PDA accepts some string of the
form {wwj w c {0,1}>} . Use the computation history method to show that this
problem is undecidable.
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5.35 Let X = {KM, w) M is a single-tape TM that never modifies the portion of the
tape that contains the input w}. Is X decidable? Prove your answer.

SELECTED SOLUTIONS

5.5 Suppose for a contradiction that ATM <m ETM via reduction f. It follows from the
definition of mapping reducibility that ATM <m ETM via the same reduction func-
tion f. However ETM is Turing-recognizable and ATM is not Turing-recognizable,
contradicting Theorem 5.28.

5.6 Suppose A <m B and B <m, C. Then there are computable functions f and
g such that x G A A> f(x) C B and y G B g(y) e C. Consider the
composition function h(x) = g(f(x)). We can build a TM that computes h as
follows: First, simulate a TM for f (such a TM exists because we assumed that f
is computable) on input x and call the output y. Then simulate a TM for g on y.
The output is h(x) = g(f(x)). Therefore h is a computable function. Moreover,
x G A 4=z h(x) e C. Hence A <m C via the reduction function h.

5.7 Suppose that A <m A. Then A <,,, A via the same mapping reduction. Because A
is Turing-recognizable, Theorem 5.28 implies that A is Turing-recognizable, and
then Theorem 4.22 implies that A is decidable.

5.8 You need to handle the case where the head is at the leftmost tape cell and attempts
to move left. To do so add dominos

[#qal
[#rb

for every q, r e Q and a, b e F, where 6(q, a) = (r, b, L).

5.10 Let B = {(M, w) l M is a two-tape TM which writes a nonbank symbol on its
second tape when it is run on w}. Show that ATM reduces to B. Assume for the
sake of contradiction that TM R decides B. Then construct TM S that uses R to
decide ATM.

S = "On input (M, w):
1. Use M to construct the following two-tape TM T.

T = "On input x:
1. Simulate M on x using the first tape.
2. If the simulation shows that M accepts, write a non-

blank symbol on the second tape."
2. Run R on (T, w) to determine whether T on input w writes a

nonblank symbol on its second tape.
3. If R accepts, M accepts w, therefore accept. Otherwise reject."
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5.11 Let C = { (M) I Mis a two-tape TM which writes a nonblank symbol on its second
tape when it is run on some input}. Show that ATM reduces to C. Assume for the
sake of contradiction that TM R decides C. Construct TM S that uses R to decide
ATM.

S = "On input (M, w):
1. Use M and w to construct the following two-tape TM T_

TW = "On any input:
1. Simulate M on w using the first tape.
2. If the simulation shows that M accepts, write a non-

blank symbol on the second tape."
2. Run Ron (Tw) to determine whether T, ever writes a nonbank

symbol on its second tape.
3. If R accepts, M accepts w, therefore accept. Otherwise reject."

5.28 Assume for the sake of contradiction that P is a decidable language satisfying the
properties and let Rp be a TM that decides P. We show how to decide ATM using
Rp by constructing TM S. First let T0 be a TM that always rejects, so L(Ta) = 0.
You may assume that (TO) 0 P without loss of generality, because you could pro-
ceed with P instead of P if (T0) E P. Because P is not trivial, there exists a TM T
with (T) E P. Design S to decide ATM using Rp's ability to distinguish between
To and T.

S = "On input (M, W):
1. Use M and w to construct the following TM M,.

MW, = "On input x:
1. Simulate M on w. If it halts and rejects, reject.

If it accepts, proceed to stage 2.
2. Simulate T on x. If it accepts, accept."

2. Use TM RP to determine whether (Mar) E P. If YES, accept.
If NO, reject."

TM M. simulates T if M accepts w. Hence L(Mm) equals L(T) if M accepts w
and 0 otherwise. Therefore (M, w) E P iff M accepts w.

5.30 (a) INFINITETM is a language of TM descriptions. It satisfies the two conditions
of Rice's theorem. First, it is nontrivial because some TMs have infinite languages
and others do not. Second, it depends only on the language. If two TMs recognize
the same language, either both have descriptions in INFINITETM or neither do.
Consequently, Rice's theorem implies that INFINITETM is undecidable.
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EXERCISES

6.1 Give an example in the spirit of the recursion theorem of a program in a real pro-
gramming language (or a reasonable approximation thereof) that prints itself out.

6.2 Show that any infinite subset of MINTM is not Turing-recognizable.

A 6 .3 Show that if A <T B and B <T C then A <T C.

6.4 Let ATM' = {(M, w)I M is an oracle TM and MATM accepts w}. Show that ATM'

is undecidable relative to ATM.

A 6.5 Is the statement IxVy [x+Y= y a member of Th(.Af,+)? Why or why not?
What about the statement 3x Vy [+x =x ?

PROBLEMS

6.6 Describe two different Turing machines, M and N, that, when started on any
input, M outputs (N) and N outputs (M).

6.7 In the fixed-point version of the recursion theorem (Theorem 6.8) let the trans-
formation t be a function that interchanges the states qaccept and qreject in Turing
machine descriptions. Give an example of a fixed point for t.

*6.8 Show that EQTM Am EQTM.

A6 .9 Use the recursion theorem to give an alternative proof of Rice's theorem in Prob-
lem 5.28.

A 6 . 1 0 Give a model of the sentence

0eq = VX [ Rl (Z. x)]

AqVx, [Rl(,y) x R(yx)]

A Vxy,z [ (Ri (x, y) A Ri (y, z)) -R (x, z)]

*6.11 Let ,eq be defined as in Problem 6.10. Give a model of the sentence

Olt = Oeq

AVx,y [Ri(-,y) -'R2(X,)

A Vx,y [-R (x, y) -(R2 (X,Y) EDR2 (Y, ))]

AVx,y,z [ (R2(X, y) A R2 (y, z)) *R 2 (X, z)1

A Vxy [R2(X,Y)I.

A 6 .12 Let (N, <) be the model with universe V and the "less than" relation. Show that
Th(AK, <) is decidable.
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6.13 For each m >1 let Z,= {0, 1,2, ... ,m - 1} and let Y = (Zm,+, x) be the
model whose universe is Zm and that has relations corresponding to the + and
x relations computed module m. Show that for each m the theory Th(.Fm) is
decidable.

6.14 Show that for any two languages A and B a language J exists, where A <-X J and
B < X J.

6.15 Show that for any language A, a language B exists, where A <T B and B •T A.

*6.16 Prove that there exist two languages A and B that are Turing-incomparable-that
is, where A •T B and B ST A.

*6.17 Let A and B be two disjoint languages. Say that language C separates A and B
if A C C and B C C. Describe two disjoint Turing-recognizable languages that
aren't separable by any decidable language.

6.18 In Corollary 4.18 we showed that the set of all languages is uncountable. Use this
result to prove that languages exist that are not recognizable by an oracle Turing
machine with oracle for ATM.

6.19 Recall the Post correspondence problem that we defined in Section 5.2 and its
associated language PCP. Show that PCP is decidable relative to ATM.

6.20 Show how to compute the descriptive complexity of strings K(z) with an oracle
for ATM.

6.21 Use the result of Problem 6.20 to give a function f that is computable with an
oracle for ATM, where for each n, f (n) is an incompressible string of length n.

6.22 Show that the function K(z) is not a computable function.

6.23 Show that the set of incompressible strings is undecidable.

6.24 Show that the set of incompressible strings contains no infinite subset that is
Turing-recognizable.

'6.25 Show that for any c, some strings x and y exist, where K(xy) > K(x) + K(y) + c.

SELECTED SOLUTIONS

6.3 Say that MB decides A and M2C decides B. Use an oracle TM M3 , where M3C
decides A. Machine 113 simulates Mi. Every time M1 queries its oracle about
some string ., machine M3 tests whether x C B and provides the answer to M1.
Because machine M 3 doesn't have an oracle for B and cannot perform that test
directly, it simulates M2 on input x to obtain that information. Machine M3 can
obtain the answer to M2 's queries directly because these two machines use the same
oracle, C.

6.5 The statement Hz Vy [ X+y=y ] is a member of Th(K, +) because that statement
is true for the standard interpretation of + over the universe AN'. Recall that we
use ' = {0, 1, 2, ... } in this chapter and so we may use r = 0. The statement
=Ir Vy [ r+y=x ] is not a member of Th(A, +) because that statement isn't true in
this model. For any value of x, setting y = 1 causes x+y=x to fail.



244 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

6.9 Assume for the sake of contradiction that some TM X decides a property P, and P
satisfies the conditions of Rice's theorem. One of these conditions says that TMs A
and B exist where (A) C P and (B) 0 P. Use A and B to construct TM R:

R = "On input w:
1. Obtain own description KR) using the recursion theorem.
2. Run X on (R).
3. If X accepts (R), simulate B on w.

If X rejects (R), simulate A on w."

If (R) e P, then X accepts (R) and L(R) = L(B). But (B) 0 P, contradicting
(R) e P, because P agrees on TMs that have the same language. We arrive at a
similar contradiction if (R) M P. Therefore our original assumption is false. Every
property satisfying the conditions of Rice's theorem is undecidable.

6.10 The statement 0,, gives the three conditions of an equivalence relation. A model
(A, R1), where A is any universe and R1 is any equivalence relation over A, is a
model of ,eq. For example, let A be the integers Z and let R1 = {(i, i)I i G Z}.

6.12 Reduce Th(AJ, <) to Th(fV, +), which we've already shown to be decidable. To
do so, show how to convert a sentence 0, over the language of Th(A(, <), to a
sentence 02 over the language of Th(AF, +) while preserving truth or falsity in
the respective models. Replace every occurrence of i < j in X1 by the formula
]k [ (i+k j) A (k+kok) ] in 02, where k is a different new variable each time.

Sentence P2 is equivalent to X1 because "i is less than j" means that we can add
a nonzero value to i and obtain j. Putting 02 into prenex-normal form, as re-
quired by the algorithm for deciding Th(JV, +), requires a bit of additional work.
The new existential quantifiers are brought to the front of the sentence. To do
so, these quantifiers must pass through Boolean operations that appear in the sen-
tence. Quantifiers can be brought through the operations of A and V without
change. Passing through - changes 3 to V and vice-versa. Thus -3k 0 becomes
the equivalent expression Vk -'y, and -Vk V) becomes 3k -'f .
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yi or zi for each i, but not both.
Now we make the satisfying assignment. If the subset contains yi, we assign

xi TRUE; otherwise, we assign it FALSE. This assignment must satisfy X because
in each of the final k columns the sum is always 3. In column cj, at most 2 can
come from gj and hj, so at least 1 in this column must come from some yi or
zi in the subset. If it is yi, then xi appears in cj and is assigned TRUE, so cj
is satisfied. If it is zi, then x, appears in cj and xi is assigned FALSE, so cj is
satisfied. Therefore X is satisfied.

Finally, we must be sure that the reduction can be carried out in polynomial
time. The table has a size of roughly (k + 1)2, and each entry can be easily
calculated for any X. So the total time is 0(n 2 ) easy stages.
........................................................................................................................................................................

EXERCISES

7.1 Answer each part TRUE or FALSE.

a. 2n = 0(n). Ad. nlogn 0(n
2 ).

b. n2 = 0(n). e. 37^ = 20(n).
Ac. n2 

= 0(7t log
2 n). f. 22 - 0(22")

7.2 Answer each part TRUE or FALSE.

a. n = o(2n). Ad. 1 = o(n).
b. 2n = o(n2). e. n = o(logn).

Ac. 2' = o(3). f. 1 = o(1/n).

7.3 Which of the following pairs of numbers are relatively prime? Show the calcula-
tions that led to your conclusions.

a. 1274 and 10505
b. 7289 and 8029

7.4 Fill out the table described in the polynomial time algorithm for context-free lan-
guage recognition from Theorem 7.16 for string w = baba and CFG G:

S - RT
R - TRI a
T - TRIb

7.5 Is the following formula satisfiable?

(xVy) A (xVy) A (iVy) A (Y Vy)

7.6 Show that P is closed under union, concatenation, and complement.
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7.7 Show that NP is closed under union and concatenation.

7.8 Let CONNECTED = K(G) G is a connected undirected graph}. Analyze the
algorithm given on page 157 to show that this language is in P.

7.9 A triangle in an undirected graph is a 3-clique. Show that TRIANGLE E P, where
TRIANGLE = {f(G) I G contains a triangle}.

7.10 Show that ALLDFA is in P.

7.11 Call graphs G and H isomorphic if the nodes of G may be reordered so that it is
identical to H. Let ISO {(G, H) I G and H are isomorphic graphs}. Show that
ISO E NP.

PROBLEMS

7.12 Let

MODEXP { (a, b, c, p) a, b, c, and p are binary integers

such that ab - c (mod p)}.

Show that MODEXP E P. (Note that the most obvious algorithm doesn't run in
polynomial time. Hint: Try it first where b is a power of 2.)

7.13 A permutation on the set {1, ... , k} is a one-to-one, onto function on this set.
When p is a permutation, p' means the composition of p with itself t times. Let

PERM-POWER - { (p, q, t) I p = qt where p and q are permutations

on {1, . .. , k} and t is a binary integer}.

Show that PERM-POWER E P. (Note that the most obvious algorithm doesn't
run within polynomial time. Hint: First try it where t is a power of 2).

7.14 Show that P is closed under the star operation. (Hint: Use dynamic programming.
On input y =yi ... y, for yi G A, build a table indicating for each i < j whether
the substring yi ... yj e A* for any A e P.)

A7 .15 Show that NP is closed under the star operation.

7.16 Let UNARY-SSUM be the subset sum problem in which all numbers are repre-
sented in unary. Why does the NP-completeness proof for SUBSET-SUM fail to
show UNARY-SSUM is NP-complete? Show that UNARY-SSUM e P.

7.17 Show that, if P = NP, then every language A E P, except A = 0 and A = E*, is
NP-complete.

'7.18 Show thatPRIMES - {mImisaprimenumberinbinary} e NP. (Hint: Forp > 1
the multiplicative group Z; = {xrI x is relatively prime to p and 1 < x < p} is both
cyclic and of order p -1 iff p is prime. You may use this fact without justifying
it. The stronger statement PRIMES G P is now known to be true, but it is more
difficult to prove.)

7.19 We generally believe that PATH is not NP-complete. Explain the reason behind
this belief. Show that proving PATH is not NP-complete would prove P 5 NP.
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7.20 Let G represent an undirected graph. Also let

SPATH { (G, a, b, k) G contains a simple path of

length at most k from a to bl,

and

LPATHI- { (G, a, b, k) G contains a simple path of

length at least k from a to b}.

a. Show that SPATH C P.

b. Show that LPATH is NP-complete. You may assume the NP-completeness
of UHAMPATH, the Hamiltonian path problem for undirected graphs.

7.21 Let DOUBLE-SAT = { (X) I ¢ has at least two satisfying assignments}. Show that
DOUBLE-SAT is NP-complete.

A7 .22 Let HALF-CLIQUE = {(G)I G is an undirected graph having a complete sub-
graph with at least m/2 nodes, where m is the number of nodes in G}. Show that
HALF-CLIQUE is NP-complete.

7.23 Let CNFk = {(X) X is a satisfiable cnf-formula where each variable appears in at
most k places}.

a. Show that CNF2 G P.

b. Show that CNF3 is NP-complete.

7.24 Let 0 be a 3cnf-formula. An 7&-assignment to the variables of X is one where
each clause contains two literals with unequal truth values. In other words, an
7&-assignment satisfies X without assigning three true literals in any clause.

a. Show that the negation of any +-assignment to 0 is also an +-assignment.

b. Let 5$SAT be the collection of 3cnf-formulas that have an 7-assignment.
Show that we obtain a polynomial time reduction from 3SAT to :ASAT by
replacing each clause ci

(Yl V Y2 V Y3)

with the two clauses

(Y1 v y 2 V zi) and (zT v y 3 V b),

where zi is a new variable for each clause ci and b is a single additional new
variable.

c. Conclude that 7&SAT is NP-complete.

7.25 A cut in an undirected graph is a separation of the vertices V into two disjoint
subsets S and T. The size of a cut is the number of edges that have one endpoint
in S and the other in T. Let

MAX-CUT = { (G, k) I G has a cut of size k or more}.

Show that MAX-CUT is NP-complete. You may assume the result of Prob-
lem 7.24. (Hint: Show that 7&SAT <p MAX-CUT. The variable gadget for
variable x is a collection of 3c nodes labeled with x and another 3c nodes labeled
with r, where c is the number of clauses. All nodes labeled x are connected with
all nodes labeled T. The clause gadget is a triangle of three edges connecting three
nodes labeled with the literals appearing in the clause. Do not use the same node
in more than one clause gadget. Prove that this reduction works.)
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7.26 You are given a box and a collection of cards as indicated in the following figure.
Because of the pegs in the box and the notches in the cards, each card will fit in the
box in either of two ways. Each card contains two columns of holes, some of which
may not be punched out. The puzzle is solved by placing all the cards in the box so
as to completely cover the bottom of the box, (i.e., every hole position is blocked
by at least one card that has no hole there.) Let PUZZLE = { (ci, * . ., Ck) I each ci
represents a card and this collection of cards has a solution}. Show that PUZZLE
is NP-complete.

box
one way

o O

card

7.27 A coloring of a graph is an assignment of colors to its nodes so that no two adjacent
nodes are assigned the same color. Let

3COLOR = { (G) I the nodes of G can be colored with three colors such that

no two nodes joined by an edge have the same color}.

Show that 3COLOR is NP-complete. (Hint: Use the following three subgraphs.)

F"
I

T' 0 -~

palette variable OR-gadget

7.28 Let SET-SPLITTING = {(S,C)I S is a finite set and C = {C1, . . ,CkI is a
collection of subsets of S, for some k > 0, such that elements of S can be colored
red or blue so that no Ci has all its elements colored with the same color.} Show
that SET-SPLITTING is NP-complete.

7.29 Consider the following scheduling problem. You are given a list of final exams
F1 , .. . , Fk to be scheduled, and a list of students Si, . . . , SI. Each student is taking
some specified subset of these exams. You must schedule these exams into slots so
that no student is required to take two exams in the same slot. The problem is to
determine if such a schedule exists that uses only h slots. Formulate this problem
as a language and show that this language is NP-complete.
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7.30 This problem is inspired by the single-player game Minesweeper, generalized to an
arbitrary graph. Let G be an undirected graph, where each node either contains
a single, hidden mine or is empty. The player chooses nodes, one by one. If the
player chooses a node containing a mine, the player loses. If the player chooses an
empty node, the player learns the number of neighboring nodes containing mines.
(A neighboring node is one connected to the chosen node by an edge.). The player
wins if and when all empty nodes have been so chosen.
In the mine consistency problem you are given a graph G, along with numbers labeling
some of G's nodes. You must determine whether a placement of mines on the
remaining nodes is possible, so that any node v that is labeled m has exactly rn
neighboring nodes containing mines. Formulate this problem as a language and
show that it is NP-complete.

A7 .31 In the following solitaire game, you are given an mn x mn board. On each of its
n2 positions lies either a blue stone, a red stone, or nothing at all. You play by
removing stones from the board so that each column contains only stones of a sin-
gle color and each row contains at least one stone. You win if you achieve this
objective. Winning may or may not be possible, depending upon the initial con-
figuration. Let SOLITAIRE = { (G) I G is a winnable game configuration}. Prove
that SOLITAIRE is NP-complete.

7.32 Let U = {(M, , #t) I TM M accepts input x within t steps on at least one branch}.
Show that U is NP-complete.

7.33 Recall, in our discussion of the Church-Turing thesis, that we introduced the lan-
guage D = { (p) I p is a polynomial in several variables having an integral root}. We
stated, but didn't prove, that D is undecidable. In this problem you are to prove
a different property of D-namely, that D is NP-hard. A problem is NP-hard if
all problems in NP are polynomial time reducible to it, even though it may not
be in NP itself. So, you must show that all problems in NP are polynomial time
reducible to D.

7.34 A subset of the nodes of a graph G is a dominating set if every other node of G is
adjacent to some node in the subset. Let

DOMINATING-SET = {f(,G k) C G has a dominating set with k nodes}.

Show that it is NP-complete by giving a reduction from VERTEX-COVER.

*7.35 Show that the following problem is NP-complete. You are given a set of states Q
{qo, q, . .., q, } and a collection of pairs {(s, ri), .. ., (Sk, rk)} where the si are
distinct strings over E {0, 1}, and the ri are (not necessarily distinct) members
of Q. Determine whether a DFA M = (Q, Z, 6, qo, F) exists where h(qo, si) = ri
for each i. Here, 6(q, s) is the state that M enters after reading a, starting at state
q. (Note that F is irrelevant here).

*7.36 Show that if P = NP, a polynomial time algorithm exists that produces a satisfying
assignment when given a satisfiable Boolean formula. (Note: The algorithm you
are asked to provide computes a function, but NP contains languages, not func-
tions. The P = NP assumption implies that SAT is in P, so testing satisfiability is
solvable in polynomial time. But the assumption doesn't say how this test is done,
and the test may not reveal satisfying assignments. You must show that you can find
them anyway. Hint: Use the satisfiability tester repeatedly to find the assignment
bit-by-bit.)
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*7.37 Show that if P = NP, you can factor integers in polynomial time. (See the note in
Problem 7.36.)

A*7.3 8 Show that if P = NP, a polynomial time algorithm exists that takes an undirected
graph as input and finds a largest clique contained in that graph. (See the note in
Problem 7.36.)

7.39 In the proof of the Cook-Levin theorem, a window is a 2 x 3 rectangle of cells.
Show why the proof would have failed if we had used 2 x 2 windows instead.

*7.40 Consider the algorithm MINIMIZE, which takes a DFA M as input and outputs
DFA M'.

MINIMIZE = "On input (M), where M (Q. A, 6, qo, A) is a DFA:
1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph G whose nodes are

the states of M.
3. Place an edge in G connecting every accept state with every

nonaccept state. Add additional edges as follows.
4. Repeat until no new edges are added to G:
5. For every pair of distinct states q and r of M and every a E:
6. Add the edge (q, r) to G if (6(q, a), 5(r, a)) is an edge of G.
7. For each state q, let [q] be the collection of states

[q] = {r c QI no edge joins q and r in G}.
8. Form a new DFA M' = (Q', A, 6', qo', A') where

Q' = {[q]I q E Q}, (if [q] = [r], only one of them is in Q'),
61([q], a) = [6(q, a)], for every q e Q and a G A,
go' = [go], and
A' = {[q]J q E A}.

9. Output (M')."

a. Show that M and M' are equivalent.

b. Show that M' is minimal-that is, no DFA with fewer states recognizes the
same language. You may use the result of Problem 1.52 without proof.

c. Show that MINIMIZE operates in polynomial time.

7.41 For a cnf-formula X with m variables and c clauses, show that you can construct
in polynomial time an NFA with O(cm) states that accepts all nonsatisfying assign-
ments, represented as Boolean strings of length m. Conclude that NFAs cannot be
minimized in polynomial time unless P = NP.

*7.42 A 2cnf-formula is an AND of clauses, where each clause is an OR of at most two
literals. Let 2SAT = { (¢) I 0 is a satisfiable 2cnf-formula}. Show that 2SAT G P.

7.43 Modify the algorithm for context-free language recognition in the proof of The-
orem 7.16 to give a polynomial time algorithm that produces a parse tree for a
string, given the string and a CFG, if that grammar generates the string.

7.44 Say that two Boolean formulas are equivalent if they have the same set of variables
and are true on the same set of assignments to those variables (i.e., they describe
the same Boolean function). A Boolean formula is minimal if no shorter Boolean
formula is equivalent to it. Let MIN-FORMULA be the collection of minimal
Boolean formulas. Show that, if P = NP, then MIN-FORMULA E P.
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7.45 The difference hierarchy DiP is defined recursively as

a. DP =NP and

b. DiP={AIA=B\CforBinNPandCinDi-1P}.
(Here B \ C = B n c.)

For example, a language in D2P is the difference of two NP languages. Sometimes
D2 P is called DP (and may be written Dv). Let

Z = { (G1, k1 , G2 , k2)1 GI has a ki-clique and G2 doesn't have a k2-cliquel.

Show that Z is complete for DP. In other words, show that every language in DP
is polynomial time reducible to Z.

*7.46 Let MALX-CLIQUE = { (G, k) I the largest clique in G is of size exactly k}. Use the
result of Problem 7.45 to show that MAX-CLIQUE is DP-complete.

*7.47 Let f: 'V Af be any function wheref(n) = o(n log n). Show that TIME(f(n))
contains only the regular languages.

*7.48 Call a regular expression star-free if it does not contain any star operations. Let
EQSF REX = { (R, S) I R and S are equivalent star-free regular expressions}. Show
that EQSF-REX is in coNP. Why does your argument fail for general regular ex-
pressions?

*7.49 This problem investigates resolution, a method for proving the unsatisfiability of
cnf-formulas. Let q5 = C1 A C2 A ... A Cm be a formula in cnf, where the Ci are
its clauses. Let C = {Ci I Ci is a clause of 0}. In a resolution step we take two clauses
C. and Cb in C which both have some variable x, occurring positively in one of
the clauses and negatively in the other. Thus C, = (x V Y1 V Y2 V ... V Yk) and
Cb = (x V zi V Z2 V ... V zt), where the y, and zi are literal. We form the new
clause (yi V Y2 V Y. Vk z1 v Z2 V ... V Z1) and remove repeated literals. Add
this new clause to C. Repeat the resolution steps until no additional clauses can be
obtained. If the empty clause ( ) is in C then declare 0 unsatisfiable.

Say that resolution is sound if it never declares satisfiable formulas to be unsatisfi-
able. Say that resolution is complete if all unsatisfiable formulas are declared to be
unsatisfiable.

a. Show that resolution is sound and complete.

b. Use part (a) to show that 2SAT e P.

SELECTED SOLUTIONS

7.1 (c)FALSE; (d)TRUE.

7.2 (c) TRUE; (d) TRUE.
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7.15 Let A G NP. Construct NTM M to decide A in nondeterministic polynomial time.

M = "On input w:
1. Nondeterministically divide w into pieces w =XI 2 ... Xk.

2. For each xi, nondeterministically guess the certificates that
show xi e A.

3. Verify all certificates if possible, then accept.
Otherwise if verification fails, reject."

7.22 We give a polynomial time mapping reduction from CLIQUE to HALF-CLIQUE.
The input to the reduction is a pair (G, k) and the reduction produces the graph
(H) as output where H is as follows. If G has m nodes and k = m/2 then H = G. If
k < m/2, then H is the graph obtained from G by adding j nodes, each connected
to every one of the original nodes and to each other, where j = m -2k. Thus H
has m + j 2m - 2k nodes. Observe that G has a k-clique iff H has a clique of
size k +j m -k and so (G, k) E CLIQUE iff (H) c HALF-CLIQUE. If k > 2m,
then H is the graph obtained by adding j nodes to G without any additional edges,
where j = 2k -m. Thus H has m + j = 2k nodes, and so G has a k-clique iff
H has a clique of size k. Therefore (G, kk) C CLIQUE iff (H) e HALF-CLIQUE.
We also need to show HALF-CLIQUE E NP. The certificate is simply the clique.

7.31 First, SOLITAIRE E NP because we can verify that a solution works, in polynomial
time. Second, we show that 3SAT <p SOLITAIRE. Given X with m variables
1 . .. . x, and k clauses c1 ,. .., Ck, construct the following k x m game G. We

assume that ¢ has no clauses that contain both xi and Yi because such clauses may
be removed without affecting satisfiability.

If xi is in clause cj put a blue stone in row ci, column xi. If :Fiis in clause cj put a
red stone in row cj, column xi. We can make the board square by repeating a row
or adding a blank column as necessary without affecting solvability. We show that
0 is satisfiable iff G has a solution.

(-) Take a satisfying assignment. If xi is true (false), remove the red (blue) stones
from the corresponding column. So, stones corresponding to true literals remain.
Because every clause has a true literal, every row has a stone.

(-) Take a game solution. If the red (blue) stones were removed from a column,
set the corresponding variable true (false). Every row has a stone remaining, so
every clause has a true literal. Therefore 0 is satisfied.

7.38 If you assume that P = NP, then CLIQUE c P, and you can test whether G con-
tains a clique of size k in polynomial time, for any value of k. By testing whether G
contains a clique of each size, from 1 to the number of nodes in G, you can deter-
mine the size t of a maximum clique in G in polynomial time. Once you know t,
you can find a clique with t nodes as follows. For each node x of G, remove x and
calculate the resulting maximum clique size. If the resulting size decreases, replace
x and continue with the next node. If the resulting size is still t, keep r perma-
nently removed and continue with the next node. When you have considered all
nodes in this way, the remaining nodes are a t-clique.
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EXERCISES

8.1 Show that for any function f: N- IZ+, where f(n) > n, the space complexity
class SPACE(f (n)) is the same whether you define the class by using the single-
tape TM model or the two tape read-only input TM model.

8.2 Consider the following position in the standard tic-tac-toe game.

Let's say that it is the X -player's turn to move next. Describe the winning strategy
for this player. (Recall that a winning strategy isn't merely the best move to make
in the current position. It also includes all the responses that this player must make
in order to win, however the opponent moves.)

8.3 Consider the following generalized geography game wherein the start node is the
one with the arrow pointing in from nowhere. Does Player I have a winning strat-
egy? Does Player II? Give reasons for your answers.

8.4 Show that PSPACE is closed under the operations union, complementation, and
star.

A8 .5 Show that NL is closed under the operations union, intersection, and star.

8.6 Show that any PSPACE-hard language is also NP-hard.

A 8.7 Show that ADFA E L.

PROBLEMS

8.8 Let EQREX = { (R, S) I R and S are equivalent regular expressions}. Show that
EQREX e PSPACE.

329
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8.9 A ladder is a sequence of strings si, 82, . .. , Sk, wherein every string differs from
the preceding one in exactly one character. For example the following is a ladder
of English words, starting with "head" and ending with "free":

head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free.

Let LADDERDFA = { (M. a, t) I M is a DFA and L(M) contains a ladder of strings,
starting with s and ending with t}. Show that LADDERDFA is in PSPACE.

8.10 The Japanese game go-moku is played by two players, "X" and "O," on a 19 x 19
grid. Players take turns placing markers, and the first player to achieve 5 of his
markers consecutively in a row, column, or diagonal, is the winner. Consider this
game generalized to an n x n board. Let

GM { (B) I B is a position in generalized go-moku,

where player "X" has a winning strategy}.

By a position we mean a board with markers placed on it, such as may occur in the
middle of a play of the game, together with an indication of which player moves
next. Show that GM C PSPACE.

8.11 Show that, if every NP-hard language is also PSPACE-hard, then PSPACE = NP.

8.12 Show that TQBF restricted to formulas where the part following the quantifiers is
in conjunctive normal form is still PSPACE-complete.

8.13 Define ALBA = {(M, w) I M is an LBA that accepts input w}. Show that ALBA is
PSPACE-complete.

8.14 Consider the following two-person version of the language PUZZLE that was de-
scribed in Problem 7.26. Each player starts with an ordered stack of puzzle cards.
The players take turns placing the cards in order in the box and may choose which
side faces up. Player I wins if, in the final stack, all hole positions are blocked, and
Player II wins if some hole position remains unblocked. Show that the problem of
determining which player has a winning strategy for a given starting configuration
of the cards is PSPACE-complete.

*8.15 The cat-and-mouse game is played by two players, "Cat" and "Mouse," on an arbi-
trary undirected graph. At a given point each player occupies a node of the graph.
The players take turns moving to a node adjacent to the one that they currently
occupy. A special node of the graph is called "Hole." Cat wins if the two players
ever occupy the same node. Mouse wins if it reaches the Hole before the preceding
happens. The game is a draw if a situation repeats (i.e., the two players simultane-
ously occupy positions that they simultaneously occupied previously and it is the
same player's turn to move).

HAPPY-CAT {(G,c, m,h)I G,c,om,h, are respectivelya graph, and

positions of the Cat, Mouse, and Hole, such that

Cat has a winning strategy if Cat moves first}.

Show that HAPPY-CAT is in P. (Hint: The solution is not complicated and doesn't
depend on subtle details in the way the game is defined. Consider the entire game
tree. It is exponentially big, but you can search it in polynomial time.)
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8.16 Read the definition of MIN-FORMULA in Problem 7.44.

a. Show that MIN-FORMULA E PSPACE.

b. Explain why this argument fails to show that MIN-FORMULA C coNP:
If 0 f MIN-FORMULA, then 0 has a smaller equivalent formula. An NTM
can verify that X E MIN-FORMULA by guessing that formula.

8.17 Let A be the language of properly nested parentheses. For example, (0) and
( (0()) () are in A, but ) ( is not. Show that A is in L.

* 8.18 Let B be the language of properly nested parentheses and brackets. For example,
( [() 0(] () [] ) is in B but ( [)] is not. Show that B is in L.

*8.19 The game of Nim is played with a collection of piles of sticks. In one move a
player may remove any nonzero number of sticks from a single pile. The players
alternately take turns making moves. The player who removes the very last stick
loses. Say that we have a game position in Nim with k piles containing s1 , -. ., Sk
sticks. Call the position balanced if, when each of the numbers si is written in
binary and the binary numbers are written as rows of a matrix aligned at the low
order bits, each column of bits contains an even number of is. Prove the following
two facts.

a. Starting in an unbalanced position, a single move exists that changes the
position into a balanced one.

b. Starting in a balanced position, every single move changes the position into
an unbalanced one.

Let NIM ={ (81, . . ., Sk) I each si is a binary number and Player I has a winning
strategy in the Nim game starting at this position}. Use the preceding facts about
balanced positions to show that NIM C L.

8.20 Let MULT = {a#b#cl where a, b, c are binary natural numbers and a x b = c}.
Show that MULT e L.

8.21 For any positive integer x, let xz be the integer whose binary representation is
the reverse of the binary representation of x. (Assume no leading Os in the binary
representation of x.) Define the function 7e+: .V-*AB where R+ (x) = + xl.

a. Let A2 = {(x, y) I 7Z+ (x) = y}. Show A2 E L.

b. Let A3 = {(,y)|I IZ+ (+(x)) = y}. Show A3 G L.

8.22 a. Let ADD = { (x, y, z) I x, y, z > 0 are binary integers and x + y z}. Show
that ADD e L.

b. Let PAL-ADD {(x, y)I x, y > 0 are binary integers where x + y is an
integer whose binary representation is a palindrome}. (Note that the binary
representation of the sum is assumed not to have leading zeros. A palin-
drome is a string that equals its reverse). Show that PAL-ADD C L.

*8.23 Define UCYCLE = {(G)I G is an undirected graph that contains a simple cycle}.
Show that UCYCLE e L. (Note: G may be a graph that is not connected.)

*8.24 For each n, exhibit two regular expressions, R and S, of length poly(n), where
L(R) # L(S), but where the first string on which they differ is exponentially long.
In other words, L(R) and L(S) must be different, yet agree on all strings of length
2" for some constant e > 0.
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8.25 An undirected graph is bipartite if its nodes may be divided into two sets so that
all edges go from a node in one set to a node in the other set. Show that a graph is
bipartite if and only if it doesn't contain a cycle that has an odd number of nodes.
Let BIPARTITE = { (G) I G is a bipartite graph} . Show that BIPARTITE C NL.

8.26 Define UPATH to be the counterpart of PATH for undirected graphs. Show that
BIPARTITE <L UPATH. (Note: As this edition was going to press, 0. Rein-
gold [60] announced that UPATH G L. Consequently, BIPARTITE G L, but the
algorithm is somewhat complicated.)

8.27 Recall that a directed graph is strongly connected if every two nodes are connected
by a directed path in each direction. Let

STRONGLY-CONNECTED ={ (G) I G is a strongly connected graph}.

Show that STRONGLY-CONNECTED is NL-complete.

8.28 Let BOTHNFA = {(Ml,M 2 )1 M1 andM2 are NFAs where L(Ml) n L(M2 ) 78 0}.

Show that BOTHNFA is NL-complete.

8.29 Show that ANFA is NL-complete.

8.30 Show that EDFA is NL-complete.

*8.31 Show that 2SAT is NL-complete.

*8.32 Give an example of an NL-complete context-free language.

A* 8. 33 Define CYCLE= {(G)I G is a directed graph that contains a directed cycle}. Show
that CYCLE is NL-complete.

SELECTED SOLUTIONS

8.5 Let Ai and A 2 be languages that are decided by NL-machines N1 and N2. Con-
struct three Turing machines: N, deciding Al U A 2 ; No deciding Al o A 2 ;
and N. deciding AT. Each of these machines receives input w.

Machine Nu nondeterministically branches to simulate N1 or to simulate N2 . In
either case, Nu accepts if the simulated machine accepts.
Machine N. nondeterministically selects a position on the input to divide it into
two substrings. Only a pointer to that position is stored on the work tape-
insufficient space is available to store the substrings themselves. Then N. simulates
N1 on the first substring, branching nondeterministically to simulate N1 's nonde-
terminism. On any branch that reaches N1 's accept state, N. simulates N2 on the
second substring. On any branch that reaches N2 's accept state, N. accepts.
Machine N. has a more complex algorithm, so we describe its stages.

N, = "On input w:
1. Initialize two input position pointers pi and P2 to 0, the position

immediately preceding the first input symbol.
2. Accept if no input symbols occur after p2.

3. Move p2 forward to a nondeterministically selected input posi-
tion.
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4. Simulate N1 on the substring of w from the position following
pi to the position at P2, branching nondeterministically to sim-
ulate N1 's nondeterminism.

5. If this branch of the simulation reaches N1 's accept state, copy
P2 to pi and go to stage 2."

8.7 Construct a TM M to decide ADFA. When M receives input (A, w), a DFA and a
string, M simulates A on w by keeping track of A's current state and its current
head location, and updating them appropriately. The space required to carry out
this simulation is O(log n) because M can record each of these values by storing a
pointer into its input.

8.33 Reduce PATH to CYCLE. The idea behind the reduction is to modify the PATH
problem instance (G, s, t) by adding an edge from t to s in G. If a path exists from
s to t in G, a directed cycle will exist in the modified G. However, other cycles may
exist in the modified G because they may already be present in G. To handle that
problem, first change G so that it contains no cycles. A leveled directed graph is
one where the nodes are divided into groups, A1 , A2 ... . Ak, called levels, and only
edges from one level to the next higher level are permitted. Observe that a leveled
graph is acyclic. The PATH problem for leveled graphs is still NL-complete, as the
following reduction from the unrestricted PATH problem shows. Given a graph G
with two nodes s and t, and m nodes in total, produce the leveled graph G' whose
levels are m copies of G's nodes. Draw an edge from node i at each level to node j
in the next level if G contains an edge from i to j. Additionally, draw an edge from
node i in each level to node i in the next level. Let s' be the node s in the first level
and let t' be the node t in the last level. Graph G contains a path from s to t iff G'
contains a path from s' to t'. If you modify G' by adding an edge from t' to s', you
obtain a reduction from PATH to CYCLE. The reduction is computationally sim-
ple, and its implementation in logspace is routine. Furthermore, a straightforward
procedure shows that CYCLE E NL. Hence CYCLE is NL-complete.
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EXERCISES

A 9 .1 Prove that TIME(2') TIME(2"').

A 9 .2 Prove that TIME(2') c TIME(22
,).

A 9.3 Prove that NTIME(n) C PSPACE.

9.4 Show how the circuit depicted in Figure 9.26 computes on input 0110 by showing
the values computed by all of the gates, as we did in Figure 9.24.

9.5 Give a circuit that computes the parity function on three input variables and show
how it computes on input 011.

9.6 Prove that if A E P then pA = p.

9.7 Give regular expressions with exponentiation that generate the following languages
over the alphabet {0,1}.

Aa. All strings of length 500

Ab. All strings of length 500 or less

AC. All strings of length 500 or more

Ad. All strings of length different than 500

e. All strings that contain exactly 500 is

f. All strings that contain at least 500 is

g. All strings that contain at most 500 is

h. All strings of length 500 or more that contain a 0 in the 500th position

i. All strings that contain two Os that have at least 500 symbols between them

9.8 If R is a regular expression, let R{mn} represent the expression

Rm U Rm+lU ... U R.

Show how to implement the RIm"I} operator, using the ordinary exponentiation
operator, but without " .

9.9 Show that if NP = pSAT, then NP = coNP.

9.10 Problem 8.13 showed that ALBA is PSPACE-complete.

a. Do we know whether ALBA E NL? Explain your answer.

b. Do we know whether ALBA E P? Explain your answer.

9.11 Show that the language MAX-CLIQUE from Problem 7.46 is in PST.

PROBLEMS

9.12 Describe the error in the following fallacious "proof" that P+NP. Assume that
P=NP and obtain a contradiction. If P=NP, then SAT C P and so for some k,
SATE TIME(nk). Because every language in NP is polynomial time reducible
to SAT, you have NP C TIME(nk). Therefore P C TIME(nk). But, by the
time hierarchy theorem, TIME(nk+1) contains a language that isn't in TIME(nk),
which contradicts P C TIME(nk). Therefore P 5# NP.
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9.13 Consider the function pad: E* x JV-E*#* that is defined as follows. Let
pad (s, 1) = s#j, where j = max(O, 1 - m) and m is the length of s. Thus pad(s, 1)
simply adds enough copies of the new symbol # to the end of s so that the length
of the result is at least 1. For any language A and function f: .V-\ N define the
language pad(A, f(m)) as

pad(A, f(m)) = {pad(s, f(m))I where s e A and m is the length of s}.

Prove that, if A G TIME(n 6 ), then pad(A, n2 ) C TIME(n3).

9.14 Prove that, if NEXPTIME :A EXPTIME, then P # NP. You may find the
function pad, defined in Problem 9.13, to be helpful.

A9 .1 5 Define pad as in Problem 9.13.

a. Prove that, for every A and natural number k, A C P iff pad(A, nk) P.

b. Prove that P 4 SPACE(n).

9.16 Prove that TQBF , SPACE(n' /3)

'9.17 Read the definition of a 2DFA (two-headed finite automaton) given in Prob-
lem 5.26. Prove that P contains a language that is not recognizable by a 2DFA.

9.18 Let EREO-T {(R) R is a regular expression with exponentiation and L(R) = 0}.
Show that EREGC C P.

9.19 Define the unique-sat problem to be

USAT = { (0) I ¢ is a Boolean formula that has a single satisfying assignment}.

Show that USAT C pSAT.

9.20 Prove that an oracle C exists for which NPC 7 coNPC.

9.21 A k-query oracle Turing machine is an oracle Turing machine that is permitted
to make at most k queries on each input. A k-oracle TM M with an oracle for
A is written MA k and pAtk is the collection of languages that are decidable by
polynomial time k-oracle A TMs.

a. Show that NP U coNP C pSATjl

b. Assume that NP 54 coNP. Show that P U coNP c pSATl,

9.22 Suppose that A and B are two oracles. One of them is an oracle for TQBF, but you
don't know which. Give an algorithm that has access to both A and B and that is
guaranteed to solve TQBF in polynomial time.

9.23 Define the function parity, as in Example 9.25. Show that parity, can be com-
puted with 0(n) size circuits.

9.24 Recall that you may consider circuits that output strings over {0,1} by designating
several output gates. Let add : {0,1} 2

,-_ {O,10, 1  take the sum of two n bit
binary integers and produce the n + 1 bit result. Show that you can compute the
add, function with 0(n) size circuits.
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9.25 Define the function majority.: {O,1}"-*{O,1} as

majority,(-i, . X.7)= { xi <n/2;

Thus the majority function returns the majority vote of the inputs. Show that
majority can be computed with

a. 0(n 2
) size circuits.

b. 0(n log n) size circuits. (Hint: Recursively divide the number of inputs in
half and use the result of Problem 9.24.)

*9.26 Define the problem majority, as in Problem 9.25. Show that it may be computed
with 0(n) size circuits.

SELECTED SOLUTIONS

9.1 The time complexity classes are defined in terms of the big-0 notation, so constant
factors have no effect. The function 2 n1 is 0(2n) and thus A c TIME(2n) iff
A c TIME(2n+').

9.2 The containment TIME(2") C TIME(2 2") holds because 2' < 22,. The con-
tainment is proper by virtue of the time hierarchy theorem. The function 22,
is time constructible because a TM can write the number 1 followed by 2n Os in
0(22,) time. Hence the theorem guarantees that a language A exists that can be
decided in 0(22,) time but not in 0(22n/ log 22n) = 0(22n/2n) time. Therefore
A E TIME(22n) but A X TIME(2n).

9.3 NTIME(n) C NSPACE(n) because any Turing machine that operates in time
t(n) on every computation branch can use at most t(n) tape cells on every branch.
Furthermore NSPACE(n) C SPACE(n2 ) due to Savitch's theorem. However,
SPACE(n2 ) C SPACE(n3 ) because of the space hierarchy theorem. The result
follows because SPACE(n3 ) C PSPACE.

9.7 (a) E500; (b) (E U E)500; (c) E500*; (d) (E Ue )4 9 9 
u E501E*

9.15 (a) Let A be any language and k c AK. If A G P, then pad(A, nk) e P because
you can determine whether w G pad(A, nk) by writing w as s#1 where s doesn't
contain the # symbol, then testing whether IwI = Slk, and finally testing whether
s E A. Implementing the first test in polynomial time is straightforward. The
second test runs in time poly(jwl), and because Jwl is poly(lsl), the test runs in
time poly(IsD) and hence is in polynomial time. If pad(A, nk) E P, then A e P
because you can determine whether w ( A by padding w with # symbols until it
has length WIk and then testing whether the result is in pad(A, nk). Both of these
tests require only polynomial time.
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(b) Assume that P = SPACE(n). Let A be a language in SPACE(n2 ) but not
in SPACE(n) as shown to exist in the space hierarchy theorem. The language
pad(A, n2 ) C SPACE(n) because you have enough space to run the 0(n 2 ) space
algorithm for A, using space that is linear in the padded language. Because of the
assumption, pad(A, n2 ) E P, hence A G P by part (a), and hence A E SPACE(n),
due to the assumption once again. But that is a contradiction.
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We can use a trapdoor function such as the RSA trapdoor function, to con-
struct a public-key cryptosystem as follows. The public key is the index i gener-
ated by the probabilistic machine G. The secret key is the corresponding value t.
The encryption algorithm breaks the message m into blocks of size at most
log N. For each block w the sender computes fi. The resulting sequence of
strings is the encrypted message. The receiver uses the function h to obtain the
original message from its encryption.

EXERCISES

10.1 Show that a circuit family with depth 0(log n) is also a polynomial size circuit
family.

10.2 Show that 12 is not pseudoprime because it fails some Fermat test.

10.3 Prove that, if A <L B and B is in NC, then A is in NC.

10.4 Show that the parity function with n inputs can be computed by a branching pro-
gram that has 0(n) nodes.

10.5 Show that the majority function with n inputs can be computed by a branching
program that has 0(n2 ) nodes.

10.6 Show that any function with n inputs can be computed by a branching program
that has 0(2n) nodes.

A10 .7 Show that BPP C PSPACE.

PROBLEMS

10.8 Let A be a regular language over {0,1}. Show that A has size-depth complexity
(O(n), 0(log n)).

'10.9 A Boolean formula is a Boolean circuit wherein every gate has only one output
wire. The same input variable may appear in multiple places of a Boolean formula.
Prove that a language has a polynomial size family of formulas iff it is in NC'.
Ignore uniformity considerations.

*10.10 A k-head pushdown automaton (k-PDA) is a deterministic pushdown automaton
with k read-only, two-way input heads and a read/write stack. Define the class
PDAk = {AI A is recognized by a k-PDA}. Show that P = Uk PDAk. (Hint:
Recall that P equals alternating log space.)
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10.11 Let M be a probabilistic polynomial time Turing machine and let C be a language
where, for some fixed 0 < cl < 62 < 1,

a. w 9' C implies Pr[M accepts w] < ci, and

b. w e C implies Pr[M accepts w] > 62.

Show that C E BPP. (Hint: Use the result of Lemma 10.5.)

10.12 Show that, if P = NP, then P = PH.

10.13 Show that, if PH = PSPACE, then the polynomial time hierarchy has only finitely
many distinct levels.

10.14 Recall that NPSAT is the class of languages that are decided by nondeterminis-
tic polynomial time Turing machines with an oracle for the satisfiability problem.
Show that NPSAT = S 2P.

*10.15 Prove Fermat's little theorem, which is given in Theorem 10.6. (Hint: Consider
the sequence a', a2 .... What must happen, and how?)

A* 10.16 Prove that, for any integer p > 1, if p isn't pseudoprime, then p fails the Fermat
test for at least half of all numbers in Z,.

10.17 Prove that, if A is a language in L, a family of branching programs (B1 , B 2 ,...
exists wherein each Bw accepts exactly the strings in A of length n and is bounded
in size by a polynomial in n.

10.18 Prove that, if A is a regular language, a family of branching programs (Bi, B 2 ,...
exists wherein each B,, accepts exactly the strings in A of length n and is bounded
in size by a constant times n.

10.19 Show that, if NP C BPP then NP = RP.

10.20 Define a ZPP-machine to be a probabilistic Turing machine which is permitted
three types of output on each of its branches: accept, reject, and ?. A ZPP-machine
M decides a language A if M outputs the correct answer on every input string w
(accept if w E A and reject if w X A) with probability at least 2 and M never
outputs the wrong answer. On every input, M may output ? with probability at
most j. Furthermore, the average running time over all branches of M on ul must
be bounded by a polynomial in the length of to. Show that RP n coRP = ZPP.

10.21 Let EQBP {(B1 , B 2 )1 B1 and B2 are equivalent branching programs}. Show
that EQBP is coNP-complete

10.22 Let BPL be the collection of languages that are decided by probabilistic log space
Turing machines with error probability 3. Prove that BPL C P.

SELECTED SOLUTIONS

10.7 If M is a probabilistic TM that runs in polynomial time, we can modify M so that
it makes exactly no coin tosses on each branch of its computation, for some con-
stant r. Thus the problem of determining the probability that M accepts its input
string reduces to counting how many branches are accepting and comparing this
number with 12(nr). This count can be performed by using polynomial space.
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10.16 Call a a witness if it fails the Fermat test for p, that is, if aP 0 1 (mod p).
Let Z; be all numbers in { 1, . . l, p- } that are relatively prime to p. If p isn't
pseudoprime, it has a witness a in Z;.

Use a to get many more witnesses. Find a unique witness in Zp for each nonwit-
ness. If d G Z* is a nonwitness, you have dP-1 1 (mod p). Hence da mod p $ 1
(mod p) and so da mod p is a witness. If d1 and d2 are distinct nonwitnesses in
zP then dia mod p :$ d2 a mod p. Otherwise (d -d2)a - 0 (mod p), and thus
(d1 - d2 )a = Cp for some integer c. But di and d2 are in Zp, and thus (di - d2 ) < P.
so a = cp/(di -d 2) and p have a factor greater than 1 in common, which is im-
possible because a and p are relatively prime. Thus the number of witnesses in Z,*
must be as large as the number of nonwitnesses in Z and consequently at least
half of the members of Z* are witnesses.

Next show that every member b of Zp that is not relatively prime to p is a witness.
If b and p share a factor, then be and p share that factor for any e > 0. Hence
bP-1 $ 1 (mod p). Therefore you can conclude that at least half of the member
of Zp are witnesses.
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Symbols

(natural numbers), 4, 227
(real numbers), 157, 176
(nonnegative real numbers), 249
(empty set), 4
(element), 3
(not element), 3
(subset), 3
(proper subset), 4
(proper subset), 328
(union operation), 4, 44
(intersection operation), 4
(Cartesian or cross product), 6
(empty string), 13
(reverse of w), 14
(negation operation), 14
(conjunction operation), 14
(disjunction operation), 14
(exclusive OR operation), 15
(implication operation), 15
(equality operation), 15
(reverse implication), 18

= (implication), 18
(logical equivalence), 18

o (concatenation operation), 44
* (star operation), 44
+ (plus operation), 65
P(Q) (power set), 53
E (alphabet), 53

( U {e}), 53
(.) (encoding), 157, 259
u (blank), 140
<m (mapping reduction), 207
<T (Turing reduction), 233
<L (log space reduction), 324
<p (polynomial time reduction), 272
d(z) (minimal description), 236
Th(M) (theory of model), 226
K(x) (descriptive complexity), 236
V (universal quantifier), 310
3 (existential quantifier), 310
{ (exponentiation), 343
O(f (n)) (big-O notation), 249-250
o(f (n)) (small-o notation), 250
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Accept state, 34, 35
Acceptance problem

for CFG, 170
for DFA, 166
for LBA, 194
for NFA, 167
for TM, 174

Accepting computation history, 193
Accepting configuration, 141
Accepts a language, meaning of, 36
ACFG, 170
Acyclic graph, 376
ADFA, 166
Adjacency matrix, 259
Adleman, Leonard M., 415, 418
Agrawal, Manindra, 415
Aho, Alfred V, 415, 419
Akl, Selim G., 415
ALBA, 194
Algorithm

complexity analysis, 248-253
decidability and undecidability,

165-182
defined, 154-156
describing, 156-159
Euclidean, 261
polynomial time, 256-263
running time, 248

ALLCFG, 197
Allen, Robin W, 416
Alon, Noga, 415
Alphabet, defined, 13
Alternating Turing machine, 381
Alternation, 380-386
Ambiguity, 105-106
Ambiguous

NFA, 184
grammar, 105, 212

Amplification lemma, 369
AND operation, 14
ANFA, 167
Angluin, Dana, 415
Anti-clique, 27
Approximation algorithm, 365-367
AREX, 168
Argument, 8
Arithmetization, 394
Arity, 8, 225
Arora, Sanjeev, 415
ASPACE(f(n)), 382

Asymptotic analysis, 248
Asymptotic notation

big-O notation, 249-250
small-o notation, 250

Asymptotic upper bound, 249
ATIME(t(n)), 382
ATM, 174
Atomic formula, 225
Automata theory, 3, see also

Context-free language;
Regular language.

Average-case analysis, 248

Baase, Sara, 415
Babai, Laszlo, 415
Bach, Eric, 415
Balcazar,Jos6 Luis, 416
Basis of induction, 23
Beame, Paul W, 416
Big-O notation, 248-250
Binary function, 8
Binary operation, 44
Binary relation, 8, 9
Bipartite graph, 332
Blank symbol u, 140
Blum, Manuel, 416
Boolean circuit, 351-359

depth, 400
gate, 352
size, 400
uniform family, 400
wire, 352

Boolean formula, 271, 310
minimal, 349
quantified, 311

Boolean logic, 14-15
Boolean matrix multiplication, 401
Boolean operation, 14, 225, 271
Boolean variable, 271
Bound variable, 310
Branching program, 376

read-once, 377
Brassard, Gilles, 416
Bratley, Paul, 416
Breadth-first search, 256
Brute-force search, 257, 260, 264, 270

Cantor, Georg, 174
Carmichael number, 372
Carmichael, R. D., 416
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Cartesian product, 6, 46
CD-ROM, 321
(Certificate, 265
CFG, see Context-free grammar
CFL, see Context-free language
Chaitin, GregoryJ., 236
Chandra, Ashok, 416
(Characterisdc sequence, 178
Checkers, game of, 320
Chernoff bound, 370
Chess, game of, 320
Chinese remainder theorem, 373
Chomsky normal form, 106-109, 130,

170, 263
Chomsky, Noam, 416
(Church, Alonzo, 2, 155, 227
Church-Turing thesis, 155-156, 253
CIRCUIT-SAT, 358
Circuit-satisfiability problem, 358
CIRCUIT-VALUE, 404
Circular definition, 65
Clause, 274
Clique, 27, 268
CLIQUE, 268
Closed under, 45
Closure under complementation

context-free languages, non-, 128
P, 294
regular languages, 85

Closure under concatenation
context-free languages, 129
NP, 295
P, 294
regular languages, 47, 60

Closure under intersection
context-free languages, non-, 128
regular languages, 46

Closure under star
context-free languages, 129
NP, 295
P, 295
regular languages, 62

Closure under union
context-free languages, 129
NP, 295
P, 294
regular languages, 45, 59

CNF-formula, 274
Co-Turing-recognizable language, 181
Cobham, Alan, 416

Coefficient, 155
Coin-flip step, 368
Complement operation, 4
Complexity class

ASPACE(f(n)), 382
ATIME(t(n)), 382
BPP, 369
coNL, 326
coNP, 269
EXPSPACE, 340
EXPTIME, 308
IP, 389
L, 321
NC, 402
NL, 321
NP, 264-270
NPSPACE, 308
NSPACE(f(n)), 304
NTIME(f(n)), 267
P, 256-263, 269-270
PH, 386
PSPACE, 308
RP, 375
SPACE(f(n)), 304
TIME(f(n)), 251
ZPP, 412

Complexity theory, 2
Church-Turing thesis, 155-156,

253
Composite number, 265, 371
Compositeness witness, 373
COMPOSITES, 265
Compressible string, 239
Computability theory, 2

decidability and undecidability,
165-182

recursion theorem, 217-224
reducibility, 187-211
Turing machines, 137-1 54

Computable function, 206
Computation history

context-free languages, 197-198
defined, 192
linear bounded automata,

193-197
Post correspondence problem,

199-205
reducibility, 192-205

Computational model, 31
Computer virus, 222
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Concatenation of strings, 14
Concatenation operation, 44, 47, 60-61
Configuration, 140, 141, 322
Conjunction operation, 14
Conjunctive normal form, 274
coNL, 326
Connected graph, 11, 157
coNP, 269
Context-free grammar

ambiguous, 105, 212
defined, 102

Context-free language
decidability, 170-172
defined, 101
efficient decidability, 262-263
inherently ambiguous, 106
pumping lemma, 123-128

Cook, Stephen A., 271, 359, 402, 416
Cook-Levin theorem, 271-360
Cormen, Thomas, 416
Corollary, 17
Correspondence, 175
Countable set, 175
Counterexample, 18
Counting problem, 392
Cross product, 6
Cryptography, 405-411
Cut edge, 367
Cut, in a graph, 296, 367
Cycle, 11

Davis, Martin, 155
Decidability, see also Undecidability.

context-free language, 170-172
of ACFG, 170
of ADFA, 166
of AREX, 168
of ECFG, 171
of EQDFA, 169
regular language, 166-170

Decidable language, 142
Decider

deterministic, 142
nondeterministic, 152

Decision problem, 366
Definition, 17
Degree of a node, 10
DeMorgan's laws, example of proof, 20
Depth complexity, 400
Derivation, 100

leftmost, 106
Derives, 102
Descriptive complexity, 236
Deterministic computation, 47
Deterministic finite automaton

acceptance problem, 166
defined, 35
emptiness testing, 168
minimization, 299

DFA, see Deterministic finite automaton
Diagonalization method, 174-181
Diaz, Josep, 416
Difference hierarchy, 300
Digital signatures, 407
Directed graph, 12
Directed path, 12
Disjunction operation, 14
Distributive law, 15
Domain of a function, 7
Dynamic programming, 262

ECFG, 171
EDFA, 168
Edge of a graph, 10
Edmonds, Jack, 416
ELBA, 195
Element distinctness problem, 147
Element of a set, 3
Emptiness testing

for CFG, 171
for DFA, 168
for LBA, 195
for TM, 189

Empty set, 4
Empty string, 13
Encoding, 157, 259
Enderton, Herbert B., 416
Enumerator, 152-153
EQCFG, 172
EQDFA, 169
EQREx, 344
EQTM

Turing-unrecognizability, 210
undecidability, 192

Equality operation, 15
Equivalence relation, 9
Equivalent machines, 54
Erd6s, Paul, 415
Error probability, 369
ETM, undecidability, 189
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Euclidean algorithm, 261
Even, Shimon, 416
EXCLUSIVE OR operation, 15
Existential state, 381
Exponential bound, 250
Exponential, versus polynomial, 257
EXPSPACE, 340
EXPSPACE-completeness, 343-349
EXPTIME, 308

Factor of a number, 371
Feller, William, 416
Fermat test, 372
Fermat's little theorem, 371
Feynman, Richard P., 416
Final state, 35
Finite automaton

automatic door example, 32
computation of, 40
decidability, 166-170
defined, 35
designing, 41-44
transition function, 35
two-dimensional, 213
two-headed, 212

Finite state machine, see
Finite automaton.

Finite state transducer, 87
Fixed point theorem, 223
Formal proof, 230
Formula, 225, 271
FORMULA-GAME, 314
Fortnow, Lance, 418
Free variable, 225
FST, see Finite state transducer
Function, 7-9

argument, 8
binary, 8
computable, 206
domain, 7
one-to-one, 175
one-way, 408
onto, 7, 175
polynomial time computable, 272
range, 7
space constructible, 336
time constructible, 340
transition, 35
unary, 8

Gabarr6, Joaquim, 416
Gadget in a completeness proof, 283
Game, 313
Garey, Michael R., 416
Gate in a Boolean circuit, 352
Generalized geography, 316
Generalized nondeterministic finite

automaton, 70-76
converting to a regular

expression, 71
defined, 70, 73

Geography game, 315
GG (generalized geography), 317
Gill, John T., 416
GNFA, see Generalized

nondeterministic finite
automaton

GO, game of, 320
Go-moku, game of, 330
Gbdel, Kurt, 2, 227, 230, 416
Goemans, Michel X., 416
Goldwasser, Shafi, 416, 417
Graph

acyclic, 376
coloring, 297
cycle in, 11
degree, 10
directed, 12
edge, 10
isomorphism problem, 295, 387
k-regular, 21
labeled, 10
node, 10
strongly connected, 12
sub-, 11
undirected, 10
vertex, 10

Greenlaw, Raymond, 417

Halting configuration, 141
Halting problem, 173-181

unsolvability of, 174
HALTTM, 188
Hamiltonian path problem, 264

exponential time algorithm, 264
NP-completeness of, 286-291
polynomial time verifier, 265

HAMPATH, 264, 286
Harary, Frank, 417
Hartmanis, Juris, 417
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Hey, AnthonyJ. G., 416
Hierarchy theorem, 336-347

space, 337
time, 341

High-level description of a Turing
machine, 157

Hilbert, David, 154, 417
Hofstadter, Douglas R., 417
Hoover, H. James, 416, 417
Hopcroft, John E., 415, 417, 419
Huang, Ming-Deh A., 415

iff, 18
Implementation description of a

Turing machine, 157
Implication operation, 15
Incompleteness theorem, 230
Incompressible string, 239
Indegree of a node, 12
Independent set, 27
Induction

basis, 23
proof by, 22-25
step, 23

Induction hypothesis, 23
Inductive definition, 65
Infinite set, 4
Infix notation, 8
Inherent ambiguity, 106
Inherently ambiguous context-free

language, 106
Integers, 4
Interactive proof system, 387-399
Interpretation, 226
Intersection operation, 4
IS0,387
Isomorphic graphs, 295

Johnson, David S., 416, 417

k-ary function, 8
k-ary relation, 8
k-clique, 267
k-optimal approximation algorithm,

367
k-tuple, 6
Karloff, Howard, 418
Karp, Richard M., 417
Kayal, Neeraj, 415
Kolmogorov, Andrei N., 236

L, 321
Labeled graph, 10
Ladder, 330
Language

co-Turing-recognizable, 181
context-free, 101
decidable, 142
defined, 14
of a grammar, 101
recursively enumerable, 142
regular, 40
Turing-decidable, 142
Turing-recognizable, 142
Turing-unrecognizable, 181

Lawler, Eugene L., 417
LBA, see Linear bounded automaton
Leaf in a tree, 11
Leeuwen, Jan van, 419
Leftmost derivation, 106
Leighton, F. Thomson, 417
Leiserson, Charles E., 416
Lemma, 17
Lenstra, Jan Karel, 417
Leveled graph, 333
Levin, Leonid A., 271, 359, 417
Lewis, Harry, 417
Lexical analyzer, 66
Lexicographic ordering, 14
Li, Ming, 417
Lichtenstein, David, 418
Linear bounded automaton, 193-197
Linear time, 253
Lipton, Richard J., 417
LISP, 154
Literal, 274
Log space computable function, 324
Log space reduction, 324, 404
Log space transducer, 324
Luby, Michael, 418
Lund, Carsten, 415, 418

Majority function, 363
Many-one reducibility, 206
Mapping, 7
Mapping reducibility, 206-211

polynomial time, 272
Markov chain, 33
Match, 199
Matijasevi6, Yuri, 155
MAX-CLIQUE, 300, 361
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MAX-CUT, 296
Maximization problem, 367
Member of a set, 3
Micali, Silvio, 416, 417
Miller, Gary L., 418
MIN-FORMULA, 383
Minesweeper, 298
Minimal Boolean formula, 349
Minimal description, 236
Minimal formula, 383
Minimization of a DFA, 299
Minimization problem, 366
Minimum pumping length, 91
Model, 226
MODEXP, 295
Modulo operation, 8
Motwani, Rajeev, 415
Multiset, 4, 269
Multitape Turing machine, 148-150
Myhill-Nerode theorem, 91

NL, 321
NL-complete problem

PATH, 322
NL-completeness

defined, 324
Natural numbers, 4
NC, 402
Negation operation, 14
NFA, see Nondeterministic finite

automaton
Nim, game of, 331
Nisan, Noam, 418
Niven, Ivan, 418
Node of a graph, 10

degree, 10
indegree, 12
outdegree, 12

Nondeterministic computation, 47
Nondeterministic finite automaton,

47-58
computation by, 48
defined, 53
equivalence with deterministic

finite automaton, 55
equivalence with regular

expression, 66
Nondeterministic polynomial time, 266
Nondeterministic Turing machine,

150-152

space complexity of, 304
time complexity of, 255

NONISO, 387
NOT operation, 14
NP, 264-270
NP-complete problem

3SAT, 274, 359
CIRCUIT-SAT, 358
HAMPATH, 286
SUBSET-SUM, 292
3COLOR, 297
UHAMPATH, 291
VERTEX-COVER, 284

NP-completeness, 271-294
defined, 276

NP-hard, 298
NP-problem, 266
NpA, 348
NPSPACE, 308
NSPACE(f(n)), 304
NTIME(f(n)), 267
NTM, see Nondeterministic Turing

machine

o(f (n)) (small-o notation), 250
One-sided error, 375
One-time pad, 406
One-to-one function, 175
One-way function, 408
One-way permutation, 408
Onto function, 7, 175
Optimal solution, 366
Optimization problem, 365
OR operation, 14
Oracle, 232, 348
Oracle tape, 348
Outdegree of a node, 12

P,256-263,269-270
P-complete problem

CIRCUIT-VALUE, 404
P-completeness, 404
pA 348

Pair, tuple, 6
Palindrome, 90, 128
Papadimitriou, Christos H., 417, 418
Parallel computation, 399-404
Parallel random access machine, 400
Parity function, 353
Parse tree, 100
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Parser, 99
Pascal, 154
Path

Hamiltonian, 264
in a graph, 11
simple, 11

PATH, 259, 322
PCP, see Post correspondence problem.
PDA, see Pushdown automaton
Perfect shuffle operation, 89, 131
PH, 386
Pigeonhole principle, 78, 79, 124
Pippenger, Nick, 402
Polynomial, 154
Polynomial bound, 250
Polynomial time

algorithm, 256-263
computable function, 272
hierarchy, 386
verifier, 265

Polynomial verifiability, 265
Polynomial, versus exponential, 257
Polynomially equivalent models, 257
Pomerance, Carl, 415, 418
Popping a symbol, 110
Post correspondence problem (PCP),

199-205
modified, 200

Power set, 6, 53
PRAM, 400
Pratt, Vaughan R., 418
Prefix notation, 8
Prefix of a string, 89
Prefix-free language, 184
Prenex normal form, 225, 310
Prime number, 265, 295, 371
Private-key cryptosystem, 407
Probabilistic algorithm, 368-380
Probabilistic function, 408
Probabilistic Turing machine, 368
Processor complexity, 400
Production, 100
Proof, 17

by construction, 21
by contradiction, 21-22
by induction, 22-25
finding, 17-20
necessity for, 77

Proper subset, 4, 328
Prover, 389

Pseudoprime, 372
PSPACE, 308
PSPACE-complete problem

FORMULA-GAME, 314
GG, 317
TQBF, 311

PSPACE-completeness, 309-320
defined, 309

Public-key cryptosystem, 407
Pumping lemma

for context-free languages,
123-128

for regular languages, 77-82
Pumping length, 77, 91, 123
Pushdown automaton, 109-122

context-free grammars, 115-122
defined, 111
examples, 112-114
schematic of, 110

Pushing a symbol, 110
Putnam, Hilary, 155
PUZZLE, 297, 330

Quantified Boolean formula, 311
Quantifier, 310

in a logical sentence, 225
Query node in a branching program,

376

Rabin, Michael O., 418
Rackoff, Charles, 417
Ramsey's theorem, 27
Range of a function, 7
Read-once branching program, 377
Real number, 176
Recognizes a language, meaning of, 36,

40
Recursion theorem, 217-224

fixed-point version, 223
terminology for, 221

Recursive language, see
Decidable language.

Recursively enumerable, see
Turing-recognizable.

Recursively enumerable language, 142
Reducibility, 187-211

mapping, 206-211
polynomial time, 272
via computation histories,

192-205
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Reduction, 187, 207
mapping, 207

Reflexive relation, 9
Regular expression, 63-76

defined, 64
equivalence to finite automaton,

66-76
examples Of, 65

Regular language, 31-82
closure under concatenation, 47,

60
closure under intersection, 46
closure under star, 62
closure under union, 45, 59
decidability, 166-170
defined, 40

Regular operation, 44
REGULARTM, 191
Reingold, Omer, 418
Rejecting computation history, 193
Rejecting configuration, 141
Relation, 8, 225

binary, 8
Relatively prime, 260
Relativization, 348-351
RELPRIME, 261
Reverse of a string, 14
Rice's theorem, 191, 213, 215, 242, 244
Rinooy Kan, A. H. G., 417
Rivest, Ronald L., 416, 418
Robinson, Julia, 155
Roche, Emmanuel, 418
Root

in a tree, 11
of a polynomial, 155

Rule in a context-free grammar, 100,
102

Rumely, Robert S., 415
Ruzzo, Walter L., 417

SAT, 276, 308
#SAT, 392
Satisfiability problem, 271
Satisfiable formula, 271
Savitch's theorem, 305-307
Saxena, Nitin, 415
Schabes, Yves, 418
Schaefer, Thomas J., 418
Scope, 310
Scope, of a quantifier, 225

Secret key, 405
Sedgewick, Robert, 418
Self-reference, 218
Sentence, 311
Sequence, 6
Sequential computer, 399
Set, 3

countable, 175
uncountable, 176

Sethi, Ravi, 415
Shallit, Jeffrey, 415
Shamir, Adi, 418
Shen, Alexander, 418
Shmoys, David B., 417
Shor, Peter W, 418
Shuffle operation, 89, 131
Simple path, 11
Sipser, Michael, 418, 419
Size complexity, 400
Small-o notation, 250
SPACE(f(n)), 304
Space complexity, 303-333
Space complexity class, 304
Space complexity of

nondeterministic Turing machine,
304

Space constructible function, 336
Space hierarchy theorem, 337
Spencer, Joel H., 415
Stack, 109
Star operation, 44, 62-63, 295
Start configuration, 141
Start state, 34
Start variable, in a context-free

grammar, 100, 102
State diagram

finite automaton, 34
pushdown automaton, 112
Turing machine, 144

Stearns, Richard E., 417
Steiglitz, Kenneth, 418
Stinson, Douglas R., 419
String, 13
Strongly connected graph, 12, 332
Structure, 226
Subgraph, 11
Subset of a set, 3
SUBSET-SUM, 268, 292
Substitution rule, 100
Substring, 14
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Sudan, Madhu, 415
Symmetric difference, 169
Symmetric relation, 9
Synchronizing sequence, 92
Szegedy, Mario, 415

Tableau, 355
Tarjan, Robert E., 419
Tautology, 382
Term, in a polynomial, 154
Terminal, 100
Terminal in a context-free grammar,

102
Th(M), 226
Theorem, 17
Theory, of a model, 226
3COLOR, 297
3SAT, 274, 359
Tic-tac-toe, game of, 329
TIME(f(n)), 251
Time complexity, 247-294

analysis of, 248-253
of nondeterministic Turing

machine, 255
Time complexity class, 267
Time constructible function, 340
Time hierarchy theorem, 341
TM, see Turing machine
TQBF, 311
Transducer

finite state, 87
log space, 324

Transition, 34
Transition function, 35
Transitive closure, 401
Transitive relation, 9
Trapdoor function, 410
Tree, 11

leaf, 11
parse, 100
root, 11

Triangle in a graph, 295
Tuple, 6
Turing machine, 137-154

alternating, 381
comparison with finite

automaton, 138
defined, 140
describing, 156-159
examples of, 142-147

marking tape symbols, 146
multitape, 148-150
nondeterministic, 150-152
oracle, 232, 348
schematic of, 138
universal, 174

Turing reducibility, 232-233
Turing, Alan M., 2, 137, 155, 419
Turing-decidable language, 142
Turing-recognizable language, 142
Turing-unrecognizable language,

181-182
EQTM, 210

Two-dimensional finite automaton, 213
Two-headed finite automaton, 212
2DFA, see Two-headed finite automaton
2DIM-DFA, see Two-dimensional finite

automaton
2SAT, 299

Ullman, Jeffrey D., 415, 417, 419
Unary

alphabet, 52, 82, 212
function, 8
notation, 259, 295
operation, 44

Uncountable set, 176
Undecidability

diagonalization method, 174-181
of ATM, 174
Of ELBA, 195
of EQTM, 192
of ETM, 189
of HALTTM, 188
of REGULARTM, 191
of EQcFG, 172
of Post correspondence problem,

200
via computation histories,

192-205
Undirected graph, 10
Union operation, 4, 44, 45, 59-60
Unit rule, 107
Universal quantifier, 310
Universal state, 381
Universal Turing machine, 174
Universe, 225, 310
Useless state

in PDA, 184
in TM, 211
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Valiant, Leslie G., 415
Variable

Boolean, 271
bound, 310
in a context-free grammar, 100,

102
start, 100, 102

Venn diagram, 4
Verifier, 265, 388
Vertex of a graph, 10
VETRTEK-COVER, 284
Virus, 222
Vitanyi, Paul, 417

Wegman, Mark, 416
Well-formed formula, 225
Williamson, David P., 416
Window, in a tableau, 279
Winning strategy, 314
Wire in a Boolean circuit, 352
Worst-case analysis, 248

XOR operation, 15, 354

Yannakakis, Mihalis, 418
Yields

for configurations, 141
for context-free grammars, 102

Zuckerman, Herbert S., 418
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